| Step |
Hyp |
Ref |
Expression |
| 1 |
|
msubff.v |
⊢ 𝑉 = ( mVR ‘ 𝑇 ) |
| 2 |
|
msubff.r |
⊢ 𝑅 = ( mREx ‘ 𝑇 ) |
| 3 |
|
msubff.s |
⊢ 𝑆 = ( mSubst ‘ 𝑇 ) |
| 4 |
|
msubff.e |
⊢ 𝐸 = ( mEx ‘ 𝑇 ) |
| 5 |
|
xp1st |
⊢ ( 𝑒 ∈ ( ( mTC ‘ 𝑇 ) × 𝑅 ) → ( 1st ‘ 𝑒 ) ∈ ( mTC ‘ 𝑇 ) ) |
| 6 |
|
eqid |
⊢ ( mTC ‘ 𝑇 ) = ( mTC ‘ 𝑇 ) |
| 7 |
6 4 2
|
mexval |
⊢ 𝐸 = ( ( mTC ‘ 𝑇 ) × 𝑅 ) |
| 8 |
5 7
|
eleq2s |
⊢ ( 𝑒 ∈ 𝐸 → ( 1st ‘ 𝑒 ) ∈ ( mTC ‘ 𝑇 ) ) |
| 9 |
8
|
adantl |
⊢ ( ( ( 𝑇 ∈ 𝑊 ∧ 𝑓 ∈ ( 𝑅 ↑pm 𝑉 ) ) ∧ 𝑒 ∈ 𝐸 ) → ( 1st ‘ 𝑒 ) ∈ ( mTC ‘ 𝑇 ) ) |
| 10 |
|
eqid |
⊢ ( mRSubst ‘ 𝑇 ) = ( mRSubst ‘ 𝑇 ) |
| 11 |
1 2 10
|
mrsubff |
⊢ ( 𝑇 ∈ 𝑊 → ( mRSubst ‘ 𝑇 ) : ( 𝑅 ↑pm 𝑉 ) ⟶ ( 𝑅 ↑m 𝑅 ) ) |
| 12 |
11
|
ffvelcdmda |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ 𝑓 ∈ ( 𝑅 ↑pm 𝑉 ) ) → ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ∈ ( 𝑅 ↑m 𝑅 ) ) |
| 13 |
|
elmapi |
⊢ ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ∈ ( 𝑅 ↑m 𝑅 ) → ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) : 𝑅 ⟶ 𝑅 ) |
| 14 |
12 13
|
syl |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ 𝑓 ∈ ( 𝑅 ↑pm 𝑉 ) ) → ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) : 𝑅 ⟶ 𝑅 ) |
| 15 |
|
xp2nd |
⊢ ( 𝑒 ∈ ( ( mTC ‘ 𝑇 ) × 𝑅 ) → ( 2nd ‘ 𝑒 ) ∈ 𝑅 ) |
| 16 |
15 7
|
eleq2s |
⊢ ( 𝑒 ∈ 𝐸 → ( 2nd ‘ 𝑒 ) ∈ 𝑅 ) |
| 17 |
|
ffvelcdm |
⊢ ( ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) : 𝑅 ⟶ 𝑅 ∧ ( 2nd ‘ 𝑒 ) ∈ 𝑅 ) → ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd ‘ 𝑒 ) ) ∈ 𝑅 ) |
| 18 |
14 16 17
|
syl2an |
⊢ ( ( ( 𝑇 ∈ 𝑊 ∧ 𝑓 ∈ ( 𝑅 ↑pm 𝑉 ) ) ∧ 𝑒 ∈ 𝐸 ) → ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd ‘ 𝑒 ) ) ∈ 𝑅 ) |
| 19 |
|
opelxp |
⊢ ( 〈 ( 1st ‘ 𝑒 ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd ‘ 𝑒 ) ) 〉 ∈ ( ( mTC ‘ 𝑇 ) × 𝑅 ) ↔ ( ( 1st ‘ 𝑒 ) ∈ ( mTC ‘ 𝑇 ) ∧ ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd ‘ 𝑒 ) ) ∈ 𝑅 ) ) |
| 20 |
9 18 19
|
sylanbrc |
⊢ ( ( ( 𝑇 ∈ 𝑊 ∧ 𝑓 ∈ ( 𝑅 ↑pm 𝑉 ) ) ∧ 𝑒 ∈ 𝐸 ) → 〈 ( 1st ‘ 𝑒 ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd ‘ 𝑒 ) ) 〉 ∈ ( ( mTC ‘ 𝑇 ) × 𝑅 ) ) |
| 21 |
20 7
|
eleqtrrdi |
⊢ ( ( ( 𝑇 ∈ 𝑊 ∧ 𝑓 ∈ ( 𝑅 ↑pm 𝑉 ) ) ∧ 𝑒 ∈ 𝐸 ) → 〈 ( 1st ‘ 𝑒 ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd ‘ 𝑒 ) ) 〉 ∈ 𝐸 ) |
| 22 |
21
|
fmpttd |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ 𝑓 ∈ ( 𝑅 ↑pm 𝑉 ) ) → ( 𝑒 ∈ 𝐸 ↦ 〈 ( 1st ‘ 𝑒 ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd ‘ 𝑒 ) ) 〉 ) : 𝐸 ⟶ 𝐸 ) |
| 23 |
4
|
fvexi |
⊢ 𝐸 ∈ V |
| 24 |
23 23
|
elmap |
⊢ ( ( 𝑒 ∈ 𝐸 ↦ 〈 ( 1st ‘ 𝑒 ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd ‘ 𝑒 ) ) 〉 ) ∈ ( 𝐸 ↑m 𝐸 ) ↔ ( 𝑒 ∈ 𝐸 ↦ 〈 ( 1st ‘ 𝑒 ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd ‘ 𝑒 ) ) 〉 ) : 𝐸 ⟶ 𝐸 ) |
| 25 |
22 24
|
sylibr |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ 𝑓 ∈ ( 𝑅 ↑pm 𝑉 ) ) → ( 𝑒 ∈ 𝐸 ↦ 〈 ( 1st ‘ 𝑒 ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd ‘ 𝑒 ) ) 〉 ) ∈ ( 𝐸 ↑m 𝐸 ) ) |
| 26 |
25
|
fmpttd |
⊢ ( 𝑇 ∈ 𝑊 → ( 𝑓 ∈ ( 𝑅 ↑pm 𝑉 ) ↦ ( 𝑒 ∈ 𝐸 ↦ 〈 ( 1st ‘ 𝑒 ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd ‘ 𝑒 ) ) 〉 ) ) : ( 𝑅 ↑pm 𝑉 ) ⟶ ( 𝐸 ↑m 𝐸 ) ) |
| 27 |
1 2 3 4 10
|
msubffval |
⊢ ( 𝑇 ∈ 𝑊 → 𝑆 = ( 𝑓 ∈ ( 𝑅 ↑pm 𝑉 ) ↦ ( 𝑒 ∈ 𝐸 ↦ 〈 ( 1st ‘ 𝑒 ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd ‘ 𝑒 ) ) 〉 ) ) ) |
| 28 |
27
|
feq1d |
⊢ ( 𝑇 ∈ 𝑊 → ( 𝑆 : ( 𝑅 ↑pm 𝑉 ) ⟶ ( 𝐸 ↑m 𝐸 ) ↔ ( 𝑓 ∈ ( 𝑅 ↑pm 𝑉 ) ↦ ( 𝑒 ∈ 𝐸 ↦ 〈 ( 1st ‘ 𝑒 ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd ‘ 𝑒 ) ) 〉 ) ) : ( 𝑅 ↑pm 𝑉 ) ⟶ ( 𝐸 ↑m 𝐸 ) ) ) |
| 29 |
26 28
|
mpbird |
⊢ ( 𝑇 ∈ 𝑊 → 𝑆 : ( 𝑅 ↑pm 𝑉 ) ⟶ ( 𝐸 ↑m 𝐸 ) ) |