Metamath Proof Explorer


Theorem msubff

Description: A substitution is a function from E to E . (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses msubff.v V = mVR T
msubff.r R = mREx T
msubff.s S = mSubst T
msubff.e E = mEx T
Assertion msubff T W S : R 𝑝𝑚 V E E

Proof

Step Hyp Ref Expression
1 msubff.v V = mVR T
2 msubff.r R = mREx T
3 msubff.s S = mSubst T
4 msubff.e E = mEx T
5 xp1st e mTC T × R 1 st e mTC T
6 eqid mTC T = mTC T
7 6 4 2 mexval E = mTC T × R
8 5 7 eleq2s e E 1 st e mTC T
9 8 adantl T W f R 𝑝𝑚 V e E 1 st e mTC T
10 eqid mRSubst T = mRSubst T
11 1 2 10 mrsubff T W mRSubst T : R 𝑝𝑚 V R R
12 11 ffvelrnda T W f R 𝑝𝑚 V mRSubst T f R R
13 elmapi mRSubst T f R R mRSubst T f : R R
14 12 13 syl T W f R 𝑝𝑚 V mRSubst T f : R R
15 xp2nd e mTC T × R 2 nd e R
16 15 7 eleq2s e E 2 nd e R
17 ffvelrn mRSubst T f : R R 2 nd e R mRSubst T f 2 nd e R
18 14 16 17 syl2an T W f R 𝑝𝑚 V e E mRSubst T f 2 nd e R
19 opelxp 1 st e mRSubst T f 2 nd e mTC T × R 1 st e mTC T mRSubst T f 2 nd e R
20 9 18 19 sylanbrc T W f R 𝑝𝑚 V e E 1 st e mRSubst T f 2 nd e mTC T × R
21 20 7 eleqtrrdi T W f R 𝑝𝑚 V e E 1 st e mRSubst T f 2 nd e E
22 21 fmpttd T W f R 𝑝𝑚 V e E 1 st e mRSubst T f 2 nd e : E E
23 4 fvexi E V
24 23 23 elmap e E 1 st e mRSubst T f 2 nd e E E e E 1 st e mRSubst T f 2 nd e : E E
25 22 24 sylibr T W f R 𝑝𝑚 V e E 1 st e mRSubst T f 2 nd e E E
26 25 fmpttd T W f R 𝑝𝑚 V e E 1 st e mRSubst T f 2 nd e : R 𝑝𝑚 V E E
27 1 2 3 4 10 msubffval T W S = f R 𝑝𝑚 V e E 1 st e mRSubst T f 2 nd e
28 27 feq1d T W S : R 𝑝𝑚 V E E f R 𝑝𝑚 V e E 1 st e mRSubst T f 2 nd e : R 𝑝𝑚 V E E
29 26 28 mpbird T W S : R 𝑝𝑚 V E E