Step |
Hyp |
Ref |
Expression |
1 |
|
msubff.v |
|- V = ( mVR ` T ) |
2 |
|
msubff.r |
|- R = ( mREx ` T ) |
3 |
|
msubff.s |
|- S = ( mSubst ` T ) |
4 |
|
msubff.e |
|- E = ( mEx ` T ) |
5 |
|
xp1st |
|- ( e e. ( ( mTC ` T ) X. R ) -> ( 1st ` e ) e. ( mTC ` T ) ) |
6 |
|
eqid |
|- ( mTC ` T ) = ( mTC ` T ) |
7 |
6 4 2
|
mexval |
|- E = ( ( mTC ` T ) X. R ) |
8 |
5 7
|
eleq2s |
|- ( e e. E -> ( 1st ` e ) e. ( mTC ` T ) ) |
9 |
8
|
adantl |
|- ( ( ( T e. W /\ f e. ( R ^pm V ) ) /\ e e. E ) -> ( 1st ` e ) e. ( mTC ` T ) ) |
10 |
|
eqid |
|- ( mRSubst ` T ) = ( mRSubst ` T ) |
11 |
1 2 10
|
mrsubff |
|- ( T e. W -> ( mRSubst ` T ) : ( R ^pm V ) --> ( R ^m R ) ) |
12 |
11
|
ffvelrnda |
|- ( ( T e. W /\ f e. ( R ^pm V ) ) -> ( ( mRSubst ` T ) ` f ) e. ( R ^m R ) ) |
13 |
|
elmapi |
|- ( ( ( mRSubst ` T ) ` f ) e. ( R ^m R ) -> ( ( mRSubst ` T ) ` f ) : R --> R ) |
14 |
12 13
|
syl |
|- ( ( T e. W /\ f e. ( R ^pm V ) ) -> ( ( mRSubst ` T ) ` f ) : R --> R ) |
15 |
|
xp2nd |
|- ( e e. ( ( mTC ` T ) X. R ) -> ( 2nd ` e ) e. R ) |
16 |
15 7
|
eleq2s |
|- ( e e. E -> ( 2nd ` e ) e. R ) |
17 |
|
ffvelrn |
|- ( ( ( ( mRSubst ` T ) ` f ) : R --> R /\ ( 2nd ` e ) e. R ) -> ( ( ( mRSubst ` T ) ` f ) ` ( 2nd ` e ) ) e. R ) |
18 |
14 16 17
|
syl2an |
|- ( ( ( T e. W /\ f e. ( R ^pm V ) ) /\ e e. E ) -> ( ( ( mRSubst ` T ) ` f ) ` ( 2nd ` e ) ) e. R ) |
19 |
|
opelxp |
|- ( <. ( 1st ` e ) , ( ( ( mRSubst ` T ) ` f ) ` ( 2nd ` e ) ) >. e. ( ( mTC ` T ) X. R ) <-> ( ( 1st ` e ) e. ( mTC ` T ) /\ ( ( ( mRSubst ` T ) ` f ) ` ( 2nd ` e ) ) e. R ) ) |
20 |
9 18 19
|
sylanbrc |
|- ( ( ( T e. W /\ f e. ( R ^pm V ) ) /\ e e. E ) -> <. ( 1st ` e ) , ( ( ( mRSubst ` T ) ` f ) ` ( 2nd ` e ) ) >. e. ( ( mTC ` T ) X. R ) ) |
21 |
20 7
|
eleqtrrdi |
|- ( ( ( T e. W /\ f e. ( R ^pm V ) ) /\ e e. E ) -> <. ( 1st ` e ) , ( ( ( mRSubst ` T ) ` f ) ` ( 2nd ` e ) ) >. e. E ) |
22 |
21
|
fmpttd |
|- ( ( T e. W /\ f e. ( R ^pm V ) ) -> ( e e. E |-> <. ( 1st ` e ) , ( ( ( mRSubst ` T ) ` f ) ` ( 2nd ` e ) ) >. ) : E --> E ) |
23 |
4
|
fvexi |
|- E e. _V |
24 |
23 23
|
elmap |
|- ( ( e e. E |-> <. ( 1st ` e ) , ( ( ( mRSubst ` T ) ` f ) ` ( 2nd ` e ) ) >. ) e. ( E ^m E ) <-> ( e e. E |-> <. ( 1st ` e ) , ( ( ( mRSubst ` T ) ` f ) ` ( 2nd ` e ) ) >. ) : E --> E ) |
25 |
22 24
|
sylibr |
|- ( ( T e. W /\ f e. ( R ^pm V ) ) -> ( e e. E |-> <. ( 1st ` e ) , ( ( ( mRSubst ` T ) ` f ) ` ( 2nd ` e ) ) >. ) e. ( E ^m E ) ) |
26 |
25
|
fmpttd |
|- ( T e. W -> ( f e. ( R ^pm V ) |-> ( e e. E |-> <. ( 1st ` e ) , ( ( ( mRSubst ` T ) ` f ) ` ( 2nd ` e ) ) >. ) ) : ( R ^pm V ) --> ( E ^m E ) ) |
27 |
1 2 3 4 10
|
msubffval |
|- ( T e. W -> S = ( f e. ( R ^pm V ) |-> ( e e. E |-> <. ( 1st ` e ) , ( ( ( mRSubst ` T ) ` f ) ` ( 2nd ` e ) ) >. ) ) ) |
28 |
27
|
feq1d |
|- ( T e. W -> ( S : ( R ^pm V ) --> ( E ^m E ) <-> ( f e. ( R ^pm V ) |-> ( e e. E |-> <. ( 1st ` e ) , ( ( ( mRSubst ` T ) ` f ) ` ( 2nd ` e ) ) >. ) ) : ( R ^pm V ) --> ( E ^m E ) ) ) |
29 |
26 28
|
mpbird |
|- ( T e. W -> S : ( R ^pm V ) --> ( E ^m E ) ) |