Step |
Hyp |
Ref |
Expression |
1 |
|
msubffval.v |
|- V = ( mVR ` T ) |
2 |
|
msubffval.r |
|- R = ( mREx ` T ) |
3 |
|
msubffval.s |
|- S = ( mSubst ` T ) |
4 |
|
msubffval.e |
|- E = ( mEx ` T ) |
5 |
|
msubffval.o |
|- O = ( mRSubst ` T ) |
6 |
|
elex |
|- ( T e. W -> T e. _V ) |
7 |
|
fveq2 |
|- ( t = T -> ( mREx ` t ) = ( mREx ` T ) ) |
8 |
7 2
|
eqtr4di |
|- ( t = T -> ( mREx ` t ) = R ) |
9 |
|
fveq2 |
|- ( t = T -> ( mVR ` t ) = ( mVR ` T ) ) |
10 |
9 1
|
eqtr4di |
|- ( t = T -> ( mVR ` t ) = V ) |
11 |
8 10
|
oveq12d |
|- ( t = T -> ( ( mREx ` t ) ^pm ( mVR ` t ) ) = ( R ^pm V ) ) |
12 |
|
fveq2 |
|- ( t = T -> ( mEx ` t ) = ( mEx ` T ) ) |
13 |
12 4
|
eqtr4di |
|- ( t = T -> ( mEx ` t ) = E ) |
14 |
|
fveq2 |
|- ( t = T -> ( mRSubst ` t ) = ( mRSubst ` T ) ) |
15 |
14 5
|
eqtr4di |
|- ( t = T -> ( mRSubst ` t ) = O ) |
16 |
15
|
fveq1d |
|- ( t = T -> ( ( mRSubst ` t ) ` f ) = ( O ` f ) ) |
17 |
16
|
fveq1d |
|- ( t = T -> ( ( ( mRSubst ` t ) ` f ) ` ( 2nd ` e ) ) = ( ( O ` f ) ` ( 2nd ` e ) ) ) |
18 |
17
|
opeq2d |
|- ( t = T -> <. ( 1st ` e ) , ( ( ( mRSubst ` t ) ` f ) ` ( 2nd ` e ) ) >. = <. ( 1st ` e ) , ( ( O ` f ) ` ( 2nd ` e ) ) >. ) |
19 |
13 18
|
mpteq12dv |
|- ( t = T -> ( e e. ( mEx ` t ) |-> <. ( 1st ` e ) , ( ( ( mRSubst ` t ) ` f ) ` ( 2nd ` e ) ) >. ) = ( e e. E |-> <. ( 1st ` e ) , ( ( O ` f ) ` ( 2nd ` e ) ) >. ) ) |
20 |
11 19
|
mpteq12dv |
|- ( t = T -> ( f e. ( ( mREx ` t ) ^pm ( mVR ` t ) ) |-> ( e e. ( mEx ` t ) |-> <. ( 1st ` e ) , ( ( ( mRSubst ` t ) ` f ) ` ( 2nd ` e ) ) >. ) ) = ( f e. ( R ^pm V ) |-> ( e e. E |-> <. ( 1st ` e ) , ( ( O ` f ) ` ( 2nd ` e ) ) >. ) ) ) |
21 |
|
df-msub |
|- mSubst = ( t e. _V |-> ( f e. ( ( mREx ` t ) ^pm ( mVR ` t ) ) |-> ( e e. ( mEx ` t ) |-> <. ( 1st ` e ) , ( ( ( mRSubst ` t ) ` f ) ` ( 2nd ` e ) ) >. ) ) ) |
22 |
|
ovex |
|- ( R ^pm V ) e. _V |
23 |
22
|
mptex |
|- ( f e. ( R ^pm V ) |-> ( e e. E |-> <. ( 1st ` e ) , ( ( O ` f ) ` ( 2nd ` e ) ) >. ) ) e. _V |
24 |
20 21 23
|
fvmpt |
|- ( T e. _V -> ( mSubst ` T ) = ( f e. ( R ^pm V ) |-> ( e e. E |-> <. ( 1st ` e ) , ( ( O ` f ) ` ( 2nd ` e ) ) >. ) ) ) |
25 |
3 24
|
syl5eq |
|- ( T e. _V -> S = ( f e. ( R ^pm V ) |-> ( e e. E |-> <. ( 1st ` e ) , ( ( O ` f ) ` ( 2nd ` e ) ) >. ) ) ) |
26 |
6 25
|
syl |
|- ( T e. W -> S = ( f e. ( R ^pm V ) |-> ( e e. E |-> <. ( 1st ` e ) , ( ( O ` f ) ` ( 2nd ` e ) ) >. ) ) ) |