Step |
Hyp |
Ref |
Expression |
1 |
|
msubffval.v |
|- V = ( mVR ` T ) |
2 |
|
msubffval.r |
|- R = ( mREx ` T ) |
3 |
|
msubffval.s |
|- S = ( mSubst ` T ) |
4 |
|
msubffval.e |
|- E = ( mEx ` T ) |
5 |
|
msubffval.o |
|- O = ( mRSubst ` T ) |
6 |
1 2 3 4 5
|
msubffval |
|- ( T e. _V -> S = ( f e. ( R ^pm V ) |-> ( e e. E |-> <. ( 1st ` e ) , ( ( O ` f ) ` ( 2nd ` e ) ) >. ) ) ) |
7 |
6
|
adantr |
|- ( ( T e. _V /\ ( F : A --> R /\ A C_ V ) ) -> S = ( f e. ( R ^pm V ) |-> ( e e. E |-> <. ( 1st ` e ) , ( ( O ` f ) ` ( 2nd ` e ) ) >. ) ) ) |
8 |
|
simplr |
|- ( ( ( ( T e. _V /\ ( F : A --> R /\ A C_ V ) ) /\ f = F ) /\ e e. E ) -> f = F ) |
9 |
8
|
fveq2d |
|- ( ( ( ( T e. _V /\ ( F : A --> R /\ A C_ V ) ) /\ f = F ) /\ e e. E ) -> ( O ` f ) = ( O ` F ) ) |
10 |
9
|
fveq1d |
|- ( ( ( ( T e. _V /\ ( F : A --> R /\ A C_ V ) ) /\ f = F ) /\ e e. E ) -> ( ( O ` f ) ` ( 2nd ` e ) ) = ( ( O ` F ) ` ( 2nd ` e ) ) ) |
11 |
10
|
opeq2d |
|- ( ( ( ( T e. _V /\ ( F : A --> R /\ A C_ V ) ) /\ f = F ) /\ e e. E ) -> <. ( 1st ` e ) , ( ( O ` f ) ` ( 2nd ` e ) ) >. = <. ( 1st ` e ) , ( ( O ` F ) ` ( 2nd ` e ) ) >. ) |
12 |
11
|
mpteq2dva |
|- ( ( ( T e. _V /\ ( F : A --> R /\ A C_ V ) ) /\ f = F ) -> ( e e. E |-> <. ( 1st ` e ) , ( ( O ` f ) ` ( 2nd ` e ) ) >. ) = ( e e. E |-> <. ( 1st ` e ) , ( ( O ` F ) ` ( 2nd ` e ) ) >. ) ) |
13 |
2
|
fvexi |
|- R e. _V |
14 |
1
|
fvexi |
|- V e. _V |
15 |
13 14
|
pm3.2i |
|- ( R e. _V /\ V e. _V ) |
16 |
15
|
a1i |
|- ( T e. _V -> ( R e. _V /\ V e. _V ) ) |
17 |
|
elpm2r |
|- ( ( ( R e. _V /\ V e. _V ) /\ ( F : A --> R /\ A C_ V ) ) -> F e. ( R ^pm V ) ) |
18 |
16 17
|
sylan |
|- ( ( T e. _V /\ ( F : A --> R /\ A C_ V ) ) -> F e. ( R ^pm V ) ) |
19 |
4
|
fvexi |
|- E e. _V |
20 |
19
|
mptex |
|- ( e e. E |-> <. ( 1st ` e ) , ( ( O ` F ) ` ( 2nd ` e ) ) >. ) e. _V |
21 |
20
|
a1i |
|- ( ( T e. _V /\ ( F : A --> R /\ A C_ V ) ) -> ( e e. E |-> <. ( 1st ` e ) , ( ( O ` F ) ` ( 2nd ` e ) ) >. ) e. _V ) |
22 |
7 12 18 21
|
fvmptd |
|- ( ( T e. _V /\ ( F : A --> R /\ A C_ V ) ) -> ( S ` F ) = ( e e. E |-> <. ( 1st ` e ) , ( ( O ` F ) ` ( 2nd ` e ) ) >. ) ) |
23 |
22
|
ex |
|- ( T e. _V -> ( ( F : A --> R /\ A C_ V ) -> ( S ` F ) = ( e e. E |-> <. ( 1st ` e ) , ( ( O ` F ) ` ( 2nd ` e ) ) >. ) ) ) |
24 |
|
0fv |
|- ( (/) ` F ) = (/) |
25 |
|
mpt0 |
|- ( e e. (/) |-> <. ( 1st ` e ) , ( ( O ` F ) ` ( 2nd ` e ) ) >. ) = (/) |
26 |
24 25
|
eqtr4i |
|- ( (/) ` F ) = ( e e. (/) |-> <. ( 1st ` e ) , ( ( O ` F ) ` ( 2nd ` e ) ) >. ) |
27 |
|
fvprc |
|- ( -. T e. _V -> ( mSubst ` T ) = (/) ) |
28 |
3 27
|
syl5eq |
|- ( -. T e. _V -> S = (/) ) |
29 |
28
|
fveq1d |
|- ( -. T e. _V -> ( S ` F ) = ( (/) ` F ) ) |
30 |
|
fvprc |
|- ( -. T e. _V -> ( mEx ` T ) = (/) ) |
31 |
4 30
|
syl5eq |
|- ( -. T e. _V -> E = (/) ) |
32 |
31
|
mpteq1d |
|- ( -. T e. _V -> ( e e. E |-> <. ( 1st ` e ) , ( ( O ` F ) ` ( 2nd ` e ) ) >. ) = ( e e. (/) |-> <. ( 1st ` e ) , ( ( O ` F ) ` ( 2nd ` e ) ) >. ) ) |
33 |
26 29 32
|
3eqtr4a |
|- ( -. T e. _V -> ( S ` F ) = ( e e. E |-> <. ( 1st ` e ) , ( ( O ` F ) ` ( 2nd ` e ) ) >. ) ) |
34 |
33
|
a1d |
|- ( -. T e. _V -> ( ( F : A --> R /\ A C_ V ) -> ( S ` F ) = ( e e. E |-> <. ( 1st ` e ) , ( ( O ` F ) ` ( 2nd ` e ) ) >. ) ) ) |
35 |
23 34
|
pm2.61i |
|- ( ( F : A --> R /\ A C_ V ) -> ( S ` F ) = ( e e. E |-> <. ( 1st ` e ) , ( ( O ` F ) ` ( 2nd ` e ) ) >. ) ) |