Step |
Hyp |
Ref |
Expression |
1 |
|
msubffval.v |
|- V = ( mVR ` T ) |
2 |
|
msubffval.r |
|- R = ( mREx ` T ) |
3 |
|
msubffval.s |
|- S = ( mSubst ` T ) |
4 |
|
msubffval.e |
|- E = ( mEx ` T ) |
5 |
|
msubffval.o |
|- O = ( mRSubst ` T ) |
6 |
1 2 3 4 5
|
msubfval |
|- ( ( F : A --> R /\ A C_ V ) -> ( S ` F ) = ( e e. E |-> <. ( 1st ` e ) , ( ( O ` F ) ` ( 2nd ` e ) ) >. ) ) |
7 |
6
|
3adant3 |
|- ( ( F : A --> R /\ A C_ V /\ X e. E ) -> ( S ` F ) = ( e e. E |-> <. ( 1st ` e ) , ( ( O ` F ) ` ( 2nd ` e ) ) >. ) ) |
8 |
|
simpr |
|- ( ( ( F : A --> R /\ A C_ V /\ X e. E ) /\ e = X ) -> e = X ) |
9 |
8
|
fveq2d |
|- ( ( ( F : A --> R /\ A C_ V /\ X e. E ) /\ e = X ) -> ( 1st ` e ) = ( 1st ` X ) ) |
10 |
8
|
fveq2d |
|- ( ( ( F : A --> R /\ A C_ V /\ X e. E ) /\ e = X ) -> ( 2nd ` e ) = ( 2nd ` X ) ) |
11 |
10
|
fveq2d |
|- ( ( ( F : A --> R /\ A C_ V /\ X e. E ) /\ e = X ) -> ( ( O ` F ) ` ( 2nd ` e ) ) = ( ( O ` F ) ` ( 2nd ` X ) ) ) |
12 |
9 11
|
opeq12d |
|- ( ( ( F : A --> R /\ A C_ V /\ X e. E ) /\ e = X ) -> <. ( 1st ` e ) , ( ( O ` F ) ` ( 2nd ` e ) ) >. = <. ( 1st ` X ) , ( ( O ` F ) ` ( 2nd ` X ) ) >. ) |
13 |
|
simp3 |
|- ( ( F : A --> R /\ A C_ V /\ X e. E ) -> X e. E ) |
14 |
|
opex |
|- <. ( 1st ` X ) , ( ( O ` F ) ` ( 2nd ` X ) ) >. e. _V |
15 |
14
|
a1i |
|- ( ( F : A --> R /\ A C_ V /\ X e. E ) -> <. ( 1st ` X ) , ( ( O ` F ) ` ( 2nd ` X ) ) >. e. _V ) |
16 |
7 12 13 15
|
fvmptd |
|- ( ( F : A --> R /\ A C_ V /\ X e. E ) -> ( ( S ` F ) ` X ) = <. ( 1st ` X ) , ( ( O ` F ) ` ( 2nd ` X ) ) >. ) |