Description: A substitution applied to an expression. (Contributed by Mario Carneiro, 18-Jul-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | msubffval.v | |- V = ( mVR ` T ) |
|
msubffval.r | |- R = ( mREx ` T ) |
||
msubffval.s | |- S = ( mSubst ` T ) |
||
msubffval.e | |- E = ( mEx ` T ) |
||
msubffval.o | |- O = ( mRSubst ` T ) |
||
Assertion | msubrsub | |- ( ( F : A --> R /\ A C_ V /\ X e. E ) -> ( 2nd ` ( ( S ` F ) ` X ) ) = ( ( O ` F ) ` ( 2nd ` X ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | msubffval.v | |- V = ( mVR ` T ) |
|
2 | msubffval.r | |- R = ( mREx ` T ) |
|
3 | msubffval.s | |- S = ( mSubst ` T ) |
|
4 | msubffval.e | |- E = ( mEx ` T ) |
|
5 | msubffval.o | |- O = ( mRSubst ` T ) |
|
6 | 1 2 3 4 5 | msubval | |- ( ( F : A --> R /\ A C_ V /\ X e. E ) -> ( ( S ` F ) ` X ) = <. ( 1st ` X ) , ( ( O ` F ) ` ( 2nd ` X ) ) >. ) |
7 | fvex | |- ( 1st ` X ) e. _V |
|
8 | fvex | |- ( ( O ` F ) ` ( 2nd ` X ) ) e. _V |
|
9 | 7 8 | op2ndd | |- ( ( ( S ` F ) ` X ) = <. ( 1st ` X ) , ( ( O ` F ) ` ( 2nd ` X ) ) >. -> ( 2nd ` ( ( S ` F ) ` X ) ) = ( ( O ` F ) ` ( 2nd ` X ) ) ) |
10 | 6 9 | syl | |- ( ( F : A --> R /\ A C_ V /\ X e. E ) -> ( 2nd ` ( ( S ` F ) ` X ) ) = ( ( O ` F ) ` ( 2nd ` X ) ) ) |