Metamath Proof Explorer


Theorem msubrsub

Description: A substitution applied to an expression. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses msubffval.v V=mVRT
msubffval.r R=mRExT
msubffval.s S=mSubstT
msubffval.e E=mExT
msubffval.o O=mRSubstT
Assertion msubrsub F:ARAVXE2ndSFX=OF2ndX

Proof

Step Hyp Ref Expression
1 msubffval.v V=mVRT
2 msubffval.r R=mRExT
3 msubffval.s S=mSubstT
4 msubffval.e E=mExT
5 msubffval.o O=mRSubstT
6 1 2 3 4 5 msubval F:ARAVXESFX=1stXOF2ndX
7 fvex 1stXV
8 fvex OF2ndXV
9 7 8 op2ndd SFX=1stXOF2ndX2ndSFX=OF2ndX
10 6 9 syl F:ARAVXE2ndSFX=OF2ndX