Metamath Proof Explorer


Theorem msubty

Description: The type of a substituted expression is the same as the original type. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses msubffval.v V = mVR T
msubffval.r R = mREx T
msubffval.s S = mSubst T
msubffval.e E = mEx T
Assertion msubty F : A R A V X E 1 st S F X = 1 st X

Proof

Step Hyp Ref Expression
1 msubffval.v V = mVR T
2 msubffval.r R = mREx T
3 msubffval.s S = mSubst T
4 msubffval.e E = mEx T
5 eqid mRSubst T = mRSubst T
6 1 2 3 4 5 msubval F : A R A V X E S F X = 1 st X mRSubst T F 2 nd X
7 fvex 1 st X V
8 fvex mRSubst T F 2 nd X V
9 7 8 op1std S F X = 1 st X mRSubst T F 2 nd X 1 st S F X = 1 st X
10 6 9 syl F : A R A V X E 1 st S F X = 1 st X