Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Mario Carneiro
Metamath formal systems
msubval
Next ⟩
msubrsub
Metamath Proof Explorer
Ascii
Unicode
Theorem
msubval
Description:
A substitution applied to an expression.
(Contributed by
Mario Carneiro
, 18-Jul-2016)
Ref
Expression
Hypotheses
msubffval.v
⊢
V
=
mVR
⁡
T
msubffval.r
⊢
R
=
mREx
⁡
T
msubffval.s
⊢
S
=
mSubst
⁡
T
msubffval.e
⊢
E
=
mEx
⁡
T
msubffval.o
⊢
O
=
mRSubst
⁡
T
Assertion
msubval
⊢
F
:
A
⟶
R
∧
A
⊆
V
∧
X
∈
E
→
S
⁡
F
⁡
X
=
1
st
⁡
X
O
⁡
F
⁡
2
nd
⁡
X
Proof
Step
Hyp
Ref
Expression
1
msubffval.v
⊢
V
=
mVR
⁡
T
2
msubffval.r
⊢
R
=
mREx
⁡
T
3
msubffval.s
⊢
S
=
mSubst
⁡
T
4
msubffval.e
⊢
E
=
mEx
⁡
T
5
msubffval.o
⊢
O
=
mRSubst
⁡
T
6
1
2
3
4
5
msubfval
⊢
F
:
A
⟶
R
∧
A
⊆
V
→
S
⁡
F
=
e
∈
E
⟼
1
st
⁡
e
O
⁡
F
⁡
2
nd
⁡
e
7
6
3adant3
⊢
F
:
A
⟶
R
∧
A
⊆
V
∧
X
∈
E
→
S
⁡
F
=
e
∈
E
⟼
1
st
⁡
e
O
⁡
F
⁡
2
nd
⁡
e
8
simpr
⊢
F
:
A
⟶
R
∧
A
⊆
V
∧
X
∈
E
∧
e
=
X
→
e
=
X
9
8
fveq2d
⊢
F
:
A
⟶
R
∧
A
⊆
V
∧
X
∈
E
∧
e
=
X
→
1
st
⁡
e
=
1
st
⁡
X
10
8
fveq2d
⊢
F
:
A
⟶
R
∧
A
⊆
V
∧
X
∈
E
∧
e
=
X
→
2
nd
⁡
e
=
2
nd
⁡
X
11
10
fveq2d
⊢
F
:
A
⟶
R
∧
A
⊆
V
∧
X
∈
E
∧
e
=
X
→
O
⁡
F
⁡
2
nd
⁡
e
=
O
⁡
F
⁡
2
nd
⁡
X
12
9
11
opeq12d
⊢
F
:
A
⟶
R
∧
A
⊆
V
∧
X
∈
E
∧
e
=
X
→
1
st
⁡
e
O
⁡
F
⁡
2
nd
⁡
e
=
1
st
⁡
X
O
⁡
F
⁡
2
nd
⁡
X
13
simp3
⊢
F
:
A
⟶
R
∧
A
⊆
V
∧
X
∈
E
→
X
∈
E
14
opex
⊢
1
st
⁡
X
O
⁡
F
⁡
2
nd
⁡
X
∈
V
15
14
a1i
⊢
F
:
A
⟶
R
∧
A
⊆
V
∧
X
∈
E
→
1
st
⁡
X
O
⁡
F
⁡
2
nd
⁡
X
∈
V
16
7
12
13
15
fvmptd
⊢
F
:
A
⟶
R
∧
A
⊆
V
∧
X
∈
E
→
S
⁡
F
⁡
X
=
1
st
⁡
X
O
⁡
F
⁡
2
nd
⁡
X