Metamath Proof Explorer


Theorem msubff1o

Description: When restricted to complete mappings, the substitution-producing function is bijective to the set of all substitutions. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses msubff1.v 𝑉 = ( mVR ‘ 𝑇 )
msubff1.r 𝑅 = ( mREx ‘ 𝑇 )
msubff1.s 𝑆 = ( mSubst ‘ 𝑇 )
Assertion msubff1o ( 𝑇 ∈ mFS → ( 𝑆 ↾ ( 𝑅m 𝑉 ) ) : ( 𝑅m 𝑉 ) –1-1-onto→ ran 𝑆 )

Proof

Step Hyp Ref Expression
1 msubff1.v 𝑉 = ( mVR ‘ 𝑇 )
2 msubff1.r 𝑅 = ( mREx ‘ 𝑇 )
3 msubff1.s 𝑆 = ( mSubst ‘ 𝑇 )
4 eqid ( mEx ‘ 𝑇 ) = ( mEx ‘ 𝑇 )
5 1 2 3 4 msubff1 ( 𝑇 ∈ mFS → ( 𝑆 ↾ ( 𝑅m 𝑉 ) ) : ( 𝑅m 𝑉 ) –1-1→ ( ( mEx ‘ 𝑇 ) ↑m ( mEx ‘ 𝑇 ) ) )
6 f1f1orn ( ( 𝑆 ↾ ( 𝑅m 𝑉 ) ) : ( 𝑅m 𝑉 ) –1-1→ ( ( mEx ‘ 𝑇 ) ↑m ( mEx ‘ 𝑇 ) ) → ( 𝑆 ↾ ( 𝑅m 𝑉 ) ) : ( 𝑅m 𝑉 ) –1-1-onto→ ran ( 𝑆 ↾ ( 𝑅m 𝑉 ) ) )
7 5 6 syl ( 𝑇 ∈ mFS → ( 𝑆 ↾ ( 𝑅m 𝑉 ) ) : ( 𝑅m 𝑉 ) –1-1-onto→ ran ( 𝑆 ↾ ( 𝑅m 𝑉 ) ) )
8 1 2 3 msubrn ran 𝑆 = ( 𝑆 “ ( 𝑅m 𝑉 ) )
9 df-ima ( 𝑆 “ ( 𝑅m 𝑉 ) ) = ran ( 𝑆 ↾ ( 𝑅m 𝑉 ) )
10 8 9 eqtri ran 𝑆 = ran ( 𝑆 ↾ ( 𝑅m 𝑉 ) )
11 f1oeq3 ( ran 𝑆 = ran ( 𝑆 ↾ ( 𝑅m 𝑉 ) ) → ( ( 𝑆 ↾ ( 𝑅m 𝑉 ) ) : ( 𝑅m 𝑉 ) –1-1-onto→ ran 𝑆 ↔ ( 𝑆 ↾ ( 𝑅m 𝑉 ) ) : ( 𝑅m 𝑉 ) –1-1-onto→ ran ( 𝑆 ↾ ( 𝑅m 𝑉 ) ) ) )
12 10 11 ax-mp ( ( 𝑆 ↾ ( 𝑅m 𝑉 ) ) : ( 𝑅m 𝑉 ) –1-1-onto→ ran 𝑆 ↔ ( 𝑆 ↾ ( 𝑅m 𝑉 ) ) : ( 𝑅m 𝑉 ) –1-1-onto→ ran ( 𝑆 ↾ ( 𝑅m 𝑉 ) ) )
13 7 12 sylibr ( 𝑇 ∈ mFS → ( 𝑆 ↾ ( 𝑅m 𝑉 ) ) : ( 𝑅m 𝑉 ) –1-1-onto→ ran 𝑆 )