Step |
Hyp |
Ref |
Expression |
1 |
|
msubff1.v |
⊢ 𝑉 = ( mVR ‘ 𝑇 ) |
2 |
|
msubff1.r |
⊢ 𝑅 = ( mREx ‘ 𝑇 ) |
3 |
|
msubff1.s |
⊢ 𝑆 = ( mSubst ‘ 𝑇 ) |
4 |
|
eqid |
⊢ ( mEx ‘ 𝑇 ) = ( mEx ‘ 𝑇 ) |
5 |
1 2 3 4
|
msubff1 |
⊢ ( 𝑇 ∈ mFS → ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) : ( 𝑅 ↑m 𝑉 ) –1-1→ ( ( mEx ‘ 𝑇 ) ↑m ( mEx ‘ 𝑇 ) ) ) |
6 |
|
f1f1orn |
⊢ ( ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) : ( 𝑅 ↑m 𝑉 ) –1-1→ ( ( mEx ‘ 𝑇 ) ↑m ( mEx ‘ 𝑇 ) ) → ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) : ( 𝑅 ↑m 𝑉 ) –1-1-onto→ ran ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) ) |
7 |
5 6
|
syl |
⊢ ( 𝑇 ∈ mFS → ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) : ( 𝑅 ↑m 𝑉 ) –1-1-onto→ ran ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) ) |
8 |
1 2 3
|
msubrn |
⊢ ran 𝑆 = ( 𝑆 “ ( 𝑅 ↑m 𝑉 ) ) |
9 |
|
df-ima |
⊢ ( 𝑆 “ ( 𝑅 ↑m 𝑉 ) ) = ran ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) |
10 |
8 9
|
eqtri |
⊢ ran 𝑆 = ran ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) |
11 |
|
f1oeq3 |
⊢ ( ran 𝑆 = ran ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) → ( ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) : ( 𝑅 ↑m 𝑉 ) –1-1-onto→ ran 𝑆 ↔ ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) : ( 𝑅 ↑m 𝑉 ) –1-1-onto→ ran ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) ) ) |
12 |
10 11
|
ax-mp |
⊢ ( ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) : ( 𝑅 ↑m 𝑉 ) –1-1-onto→ ran 𝑆 ↔ ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) : ( 𝑅 ↑m 𝑉 ) –1-1-onto→ ran ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) ) |
13 |
7 12
|
sylibr |
⊢ ( 𝑇 ∈ mFS → ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) : ( 𝑅 ↑m 𝑉 ) –1-1-onto→ ran 𝑆 ) |