| Step | Hyp | Ref | Expression | 
						
							| 1 |  | msubff1.v | ⊢ 𝑉  =  ( mVR ‘ 𝑇 ) | 
						
							| 2 |  | msubff1.r | ⊢ 𝑅  =  ( mREx ‘ 𝑇 ) | 
						
							| 3 |  | msubff1.s | ⊢ 𝑆  =  ( mSubst ‘ 𝑇 ) | 
						
							| 4 |  | eqid | ⊢ ( mEx ‘ 𝑇 )  =  ( mEx ‘ 𝑇 ) | 
						
							| 5 | 1 2 3 4 | msubff1 | ⊢ ( 𝑇  ∈  mFS  →  ( 𝑆  ↾  ( 𝑅  ↑m  𝑉 ) ) : ( 𝑅  ↑m  𝑉 ) –1-1→ ( ( mEx ‘ 𝑇 )  ↑m  ( mEx ‘ 𝑇 ) ) ) | 
						
							| 6 |  | f1f1orn | ⊢ ( ( 𝑆  ↾  ( 𝑅  ↑m  𝑉 ) ) : ( 𝑅  ↑m  𝑉 ) –1-1→ ( ( mEx ‘ 𝑇 )  ↑m  ( mEx ‘ 𝑇 ) )  →  ( 𝑆  ↾  ( 𝑅  ↑m  𝑉 ) ) : ( 𝑅  ↑m  𝑉 ) –1-1-onto→ ran  ( 𝑆  ↾  ( 𝑅  ↑m  𝑉 ) ) ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝑇  ∈  mFS  →  ( 𝑆  ↾  ( 𝑅  ↑m  𝑉 ) ) : ( 𝑅  ↑m  𝑉 ) –1-1-onto→ ran  ( 𝑆  ↾  ( 𝑅  ↑m  𝑉 ) ) ) | 
						
							| 8 | 1 2 3 | msubrn | ⊢ ran  𝑆  =  ( 𝑆  “  ( 𝑅  ↑m  𝑉 ) ) | 
						
							| 9 |  | df-ima | ⊢ ( 𝑆  “  ( 𝑅  ↑m  𝑉 ) )  =  ran  ( 𝑆  ↾  ( 𝑅  ↑m  𝑉 ) ) | 
						
							| 10 | 8 9 | eqtri | ⊢ ran  𝑆  =  ran  ( 𝑆  ↾  ( 𝑅  ↑m  𝑉 ) ) | 
						
							| 11 |  | f1oeq3 | ⊢ ( ran  𝑆  =  ran  ( 𝑆  ↾  ( 𝑅  ↑m  𝑉 ) )  →  ( ( 𝑆  ↾  ( 𝑅  ↑m  𝑉 ) ) : ( 𝑅  ↑m  𝑉 ) –1-1-onto→ ran  𝑆  ↔  ( 𝑆  ↾  ( 𝑅  ↑m  𝑉 ) ) : ( 𝑅  ↑m  𝑉 ) –1-1-onto→ ran  ( 𝑆  ↾  ( 𝑅  ↑m  𝑉 ) ) ) ) | 
						
							| 12 | 10 11 | ax-mp | ⊢ ( ( 𝑆  ↾  ( 𝑅  ↑m  𝑉 ) ) : ( 𝑅  ↑m  𝑉 ) –1-1-onto→ ran  𝑆  ↔  ( 𝑆  ↾  ( 𝑅  ↑m  𝑉 ) ) : ( 𝑅  ↑m  𝑉 ) –1-1-onto→ ran  ( 𝑆  ↾  ( 𝑅  ↑m  𝑉 ) ) ) | 
						
							| 13 | 7 12 | sylibr | ⊢ ( 𝑇  ∈  mFS  →  ( 𝑆  ↾  ( 𝑅  ↑m  𝑉 ) ) : ( 𝑅  ↑m  𝑉 ) –1-1-onto→ ran  𝑆 ) |