Metamath Proof Explorer


Theorem msubff1o

Description: When restricted to complete mappings, the substitution-producing function is bijective to the set of all substitutions. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses msubff1.v
|- V = ( mVR ` T )
msubff1.r
|- R = ( mREx ` T )
msubff1.s
|- S = ( mSubst ` T )
Assertion msubff1o
|- ( T e. mFS -> ( S |` ( R ^m V ) ) : ( R ^m V ) -1-1-onto-> ran S )

Proof

Step Hyp Ref Expression
1 msubff1.v
 |-  V = ( mVR ` T )
2 msubff1.r
 |-  R = ( mREx ` T )
3 msubff1.s
 |-  S = ( mSubst ` T )
4 eqid
 |-  ( mEx ` T ) = ( mEx ` T )
5 1 2 3 4 msubff1
 |-  ( T e. mFS -> ( S |` ( R ^m V ) ) : ( R ^m V ) -1-1-> ( ( mEx ` T ) ^m ( mEx ` T ) ) )
6 f1f1orn
 |-  ( ( S |` ( R ^m V ) ) : ( R ^m V ) -1-1-> ( ( mEx ` T ) ^m ( mEx ` T ) ) -> ( S |` ( R ^m V ) ) : ( R ^m V ) -1-1-onto-> ran ( S |` ( R ^m V ) ) )
7 5 6 syl
 |-  ( T e. mFS -> ( S |` ( R ^m V ) ) : ( R ^m V ) -1-1-onto-> ran ( S |` ( R ^m V ) ) )
8 1 2 3 msubrn
 |-  ran S = ( S " ( R ^m V ) )
9 df-ima
 |-  ( S " ( R ^m V ) ) = ran ( S |` ( R ^m V ) )
10 8 9 eqtri
 |-  ran S = ran ( S |` ( R ^m V ) )
11 f1oeq3
 |-  ( ran S = ran ( S |` ( R ^m V ) ) -> ( ( S |` ( R ^m V ) ) : ( R ^m V ) -1-1-onto-> ran S <-> ( S |` ( R ^m V ) ) : ( R ^m V ) -1-1-onto-> ran ( S |` ( R ^m V ) ) ) )
12 10 11 ax-mp
 |-  ( ( S |` ( R ^m V ) ) : ( R ^m V ) -1-1-onto-> ran S <-> ( S |` ( R ^m V ) ) : ( R ^m V ) -1-1-onto-> ran ( S |` ( R ^m V ) ) )
13 7 12 sylibr
 |-  ( T e. mFS -> ( S |` ( R ^m V ) ) : ( R ^m V ) -1-1-onto-> ran S )