Step |
Hyp |
Ref |
Expression |
1 |
|
mvhf.v |
|- V = ( mVR ` T ) |
2 |
|
mvhf.e |
|- E = ( mEx ` T ) |
3 |
|
mvhf.h |
|- H = ( mVH ` T ) |
4 |
|
eqid |
|- ( mTC ` T ) = ( mTC ` T ) |
5 |
|
eqid |
|- ( mType ` T ) = ( mType ` T ) |
6 |
1 4 5
|
mtyf2 |
|- ( T e. mFS -> ( mType ` T ) : V --> ( mTC ` T ) ) |
7 |
6
|
ffvelrnda |
|- ( ( T e. mFS /\ v e. V ) -> ( ( mType ` T ) ` v ) e. ( mTC ` T ) ) |
8 |
|
elun2 |
|- ( v e. V -> v e. ( ( mCN ` T ) u. V ) ) |
9 |
8
|
adantl |
|- ( ( T e. mFS /\ v e. V ) -> v e. ( ( mCN ` T ) u. V ) ) |
10 |
9
|
s1cld |
|- ( ( T e. mFS /\ v e. V ) -> <" v "> e. Word ( ( mCN ` T ) u. V ) ) |
11 |
|
eqid |
|- ( mCN ` T ) = ( mCN ` T ) |
12 |
|
eqid |
|- ( mREx ` T ) = ( mREx ` T ) |
13 |
11 1 12
|
mrexval |
|- ( T e. mFS -> ( mREx ` T ) = Word ( ( mCN ` T ) u. V ) ) |
14 |
13
|
adantr |
|- ( ( T e. mFS /\ v e. V ) -> ( mREx ` T ) = Word ( ( mCN ` T ) u. V ) ) |
15 |
10 14
|
eleqtrrd |
|- ( ( T e. mFS /\ v e. V ) -> <" v "> e. ( mREx ` T ) ) |
16 |
|
opelxpi |
|- ( ( ( ( mType ` T ) ` v ) e. ( mTC ` T ) /\ <" v "> e. ( mREx ` T ) ) -> <. ( ( mType ` T ) ` v ) , <" v "> >. e. ( ( mTC ` T ) X. ( mREx ` T ) ) ) |
17 |
7 15 16
|
syl2anc |
|- ( ( T e. mFS /\ v e. V ) -> <. ( ( mType ` T ) ` v ) , <" v "> >. e. ( ( mTC ` T ) X. ( mREx ` T ) ) ) |
18 |
4 2 12
|
mexval |
|- E = ( ( mTC ` T ) X. ( mREx ` T ) ) |
19 |
17 18
|
eleqtrrdi |
|- ( ( T e. mFS /\ v e. V ) -> <. ( ( mType ` T ) ` v ) , <" v "> >. e. E ) |
20 |
1 5 3
|
mvhfval |
|- H = ( v e. V |-> <. ( ( mType ` T ) ` v ) , <" v "> >. ) |
21 |
19 20
|
fmptd |
|- ( T e. mFS -> H : V --> E ) |