Metamath Proof Explorer


Theorem mvhf

Description: The function mapping variables to variable expressions is a function. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mvhf.v V=mVRT
mvhf.e E=mExT
mvhf.h H=mVHT
Assertion mvhf TmFSH:VE

Proof

Step Hyp Ref Expression
1 mvhf.v V=mVRT
2 mvhf.e E=mExT
3 mvhf.h H=mVHT
4 eqid mTCT=mTCT
5 eqid mTypeT=mTypeT
6 1 4 5 mtyf2 TmFSmTypeT:VmTCT
7 6 ffvelcdmda TmFSvVmTypeTvmTCT
8 elun2 vVvmCNTV
9 8 adantl TmFSvVvmCNTV
10 9 s1cld TmFSvV⟨“v”⟩WordmCNTV
11 eqid mCNT=mCNT
12 eqid mRExT=mRExT
13 11 1 12 mrexval TmFSmRExT=WordmCNTV
14 13 adantr TmFSvVmRExT=WordmCNTV
15 10 14 eleqtrrd TmFSvV⟨“v”⟩mRExT
16 opelxpi mTypeTvmTCT⟨“v”⟩mRExTmTypeTv⟨“v”⟩mTCT×mRExT
17 7 15 16 syl2anc TmFSvVmTypeTv⟨“v”⟩mTCT×mRExT
18 4 2 12 mexval E=mTCT×mRExT
19 17 18 eleqtrrdi TmFSvVmTypeTv⟨“v”⟩E
20 1 5 3 mvhfval H=vVmTypeTv⟨“v”⟩
21 19 20 fmptd TmFSH:VE