Metamath Proof Explorer


Theorem mvhf

Description: The function mapping variables to variable expressions is a function. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mvhf.v V = mVR T
mvhf.e E = mEx T
mvhf.h H = mVH T
Assertion mvhf T mFS H : V E

Proof

Step Hyp Ref Expression
1 mvhf.v V = mVR T
2 mvhf.e E = mEx T
3 mvhf.h H = mVH T
4 eqid mTC T = mTC T
5 eqid mType T = mType T
6 1 4 5 mtyf2 T mFS mType T : V mTC T
7 6 ffvelrnda T mFS v V mType T v mTC T
8 elun2 v V v mCN T V
9 8 adantl T mFS v V v mCN T V
10 9 s1cld T mFS v V ⟨“ v ”⟩ Word mCN T V
11 eqid mCN T = mCN T
12 eqid mREx T = mREx T
13 11 1 12 mrexval T mFS mREx T = Word mCN T V
14 13 adantr T mFS v V mREx T = Word mCN T V
15 10 14 eleqtrrd T mFS v V ⟨“ v ”⟩ mREx T
16 opelxpi mType T v mTC T ⟨“ v ”⟩ mREx T mType T v ⟨“ v ”⟩ mTC T × mREx T
17 7 15 16 syl2anc T mFS v V mType T v ⟨“ v ”⟩ mTC T × mREx T
18 4 2 12 mexval E = mTC T × mREx T
19 17 18 eleqtrrdi T mFS v V mType T v ⟨“ v ”⟩ E
20 1 5 3 mvhfval H = v V mType T v ⟨“ v ”⟩
21 19 20 fmptd T mFS H : V E