Metamath Proof Explorer


Theorem mtyf2

Description: The type function maps variables to typecodes. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mtyf2.v V=mVRT
mvtf2.k K=mTCT
mtyf2.y Y=mTypeT
Assertion mtyf2 TmFSY:VK

Proof

Step Hyp Ref Expression
1 mtyf2.v V=mVRT
2 mvtf2.k K=mTCT
3 mtyf2.y Y=mTypeT
4 eqid mCNT=mCNT
5 eqid mVTT=mVTT
6 eqid mAxT=mAxT
7 eqid mStatT=mStatT
8 4 1 3 5 2 6 7 ismfs TmFSTmFSmCNTV=Y:VKmAxTmStatTvmVTT¬Y-1vFin
9 8 ibi TmFSmCNTV=Y:VKmAxTmStatTvmVTT¬Y-1vFin
10 9 simplrd TmFSY:VK