Metamath Proof Explorer


Definition df-mfs

Description: Define the set of all formal systems. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-mfs mFS=t|mCNtmVRt=mTypet:mVRtmTCtmAxtmStattvmVTt¬mTypet-1vFin

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmfs classmFS
1 vt setvart
2 cmcn classmCN
3 1 cv setvart
4 3 2 cfv classmCNt
5 cmvar classmVR
6 3 5 cfv classmVRt
7 4 6 cin classmCNtmVRt
8 c0 class
9 7 8 wceq wffmCNtmVRt=
10 cmty classmType
11 3 10 cfv classmTypet
12 cmtc classmTC
13 3 12 cfv classmTCt
14 6 13 11 wf wffmTypet:mVRtmTCt
15 9 14 wa wffmCNtmVRt=mTypet:mVRtmTCt
16 cmax classmAx
17 3 16 cfv classmAxt
18 cmsta classmStat
19 3 18 cfv classmStatt
20 17 19 wss wffmAxtmStatt
21 vv setvarv
22 cmvt classmVT
23 3 22 cfv classmVTt
24 11 ccnv classmTypet-1
25 21 cv setvarv
26 25 csn classv
27 24 26 cima classmTypet-1v
28 cfn classFin
29 27 28 wcel wffmTypet-1vFin
30 29 wn wff¬mTypet-1vFin
31 30 21 23 wral wffvmVTt¬mTypet-1vFin
32 20 31 wa wffmAxtmStattvmVTt¬mTypet-1vFin
33 15 32 wa wffmCNtmVRt=mTypet:mVRtmTCtmAxtmStattvmVTt¬mTypet-1vFin
34 33 1 cab classt|mCNtmVRt=mTypet:mVRtmTCtmAxtmStattvmVTt¬mTypet-1vFin
35 0 34 wceq wffmFS=t|mCNtmVRt=mTypet:mVRtmTCtmAxtmStattvmVTt¬mTypet-1vFin