Step |
Hyp |
Ref |
Expression |
1 |
|
mtyf2.v |
|- V = ( mVR ` T ) |
2 |
|
mvtf2.k |
|- K = ( mTC ` T ) |
3 |
|
mtyf2.y |
|- Y = ( mType ` T ) |
4 |
|
eqid |
|- ( mCN ` T ) = ( mCN ` T ) |
5 |
|
eqid |
|- ( mVT ` T ) = ( mVT ` T ) |
6 |
|
eqid |
|- ( mAx ` T ) = ( mAx ` T ) |
7 |
|
eqid |
|- ( mStat ` T ) = ( mStat ` T ) |
8 |
4 1 3 5 2 6 7
|
ismfs |
|- ( T e. mFS -> ( T e. mFS <-> ( ( ( ( mCN ` T ) i^i V ) = (/) /\ Y : V --> K ) /\ ( ( mAx ` T ) C_ ( mStat ` T ) /\ A. v e. ( mVT ` T ) -. ( `' Y " { v } ) e. Fin ) ) ) ) |
9 |
8
|
ibi |
|- ( T e. mFS -> ( ( ( ( mCN ` T ) i^i V ) = (/) /\ Y : V --> K ) /\ ( ( mAx ` T ) C_ ( mStat ` T ) /\ A. v e. ( mVT ` T ) -. ( `' Y " { v } ) e. Fin ) ) ) |
10 |
9
|
simplrd |
|- ( T e. mFS -> Y : V --> K ) |