Step |
Hyp |
Ref |
Expression |
1 |
|
mtyf.v |
|- V = ( mVR ` T ) |
2 |
|
mtyf.f |
|- F = ( mVT ` T ) |
3 |
|
mtyf.y |
|- Y = ( mType ` T ) |
4 |
|
eqid |
|- ( mTC ` T ) = ( mTC ` T ) |
5 |
1 4 3
|
mtyf2 |
|- ( T e. mFS -> Y : V --> ( mTC ` T ) ) |
6 |
|
ffn |
|- ( Y : V --> ( mTC ` T ) -> Y Fn V ) |
7 |
|
dffn4 |
|- ( Y Fn V <-> Y : V -onto-> ran Y ) |
8 |
6 7
|
sylib |
|- ( Y : V --> ( mTC ` T ) -> Y : V -onto-> ran Y ) |
9 |
|
fof |
|- ( Y : V -onto-> ran Y -> Y : V --> ran Y ) |
10 |
5 8 9
|
3syl |
|- ( T e. mFS -> Y : V --> ran Y ) |
11 |
2 3
|
mvtval |
|- F = ran Y |
12 |
|
feq3 |
|- ( F = ran Y -> ( Y : V --> F <-> Y : V --> ran Y ) ) |
13 |
11 12
|
ax-mp |
|- ( Y : V --> F <-> Y : V --> ran Y ) |
14 |
10 13
|
sylibr |
|- ( T e. mFS -> Y : V --> F ) |