Metamath Proof Explorer


Theorem mvhfval

Description: Value of the function mapping variables to their corresponding variable expressions. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mvhfval.v V = mVR T
mvhfval.y Y = mType T
mvhfval.h H = mVH T
Assertion mvhfval H = v V Y v ⟨“ v ”⟩

Proof

Step Hyp Ref Expression
1 mvhfval.v V = mVR T
2 mvhfval.y Y = mType T
3 mvhfval.h H = mVH T
4 fveq2 t = T mVR t = mVR T
5 4 1 eqtr4di t = T mVR t = V
6 fveq2 t = T mType t = mType T
7 6 2 eqtr4di t = T mType t = Y
8 7 fveq1d t = T mType t v = Y v
9 8 opeq1d t = T mType t v ⟨“ v ”⟩ = Y v ⟨“ v ”⟩
10 5 9 mpteq12dv t = T v mVR t mType t v ⟨“ v ”⟩ = v V Y v ⟨“ v ”⟩
11 df-mvh mVH = t V v mVR t mType t v ⟨“ v ”⟩
12 10 11 1 mptfvmpt T V mVH T = v V Y v ⟨“ v ”⟩
13 mpt0 v Y v ⟨“ v ”⟩ =
14 13 eqcomi = v Y v ⟨“ v ”⟩
15 fvprc ¬ T V mVH T =
16 fvprc ¬ T V mVR T =
17 1 16 syl5eq ¬ T V V =
18 17 mpteq1d ¬ T V v V Y v ⟨“ v ”⟩ = v Y v ⟨“ v ”⟩
19 14 15 18 3eqtr4a ¬ T V mVH T = v V Y v ⟨“ v ”⟩
20 12 19 pm2.61i mVH T = v V Y v ⟨“ v ”⟩
21 3 20 eqtri H = v V Y v ⟨“ v ”⟩