Metamath Proof Explorer


Theorem mvhfval

Description: Value of the function mapping variables to their corresponding variable expressions. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mvhfval.v
|- V = ( mVR ` T )
mvhfval.y
|- Y = ( mType ` T )
mvhfval.h
|- H = ( mVH ` T )
Assertion mvhfval
|- H = ( v e. V |-> <. ( Y ` v ) , <" v "> >. )

Proof

Step Hyp Ref Expression
1 mvhfval.v
 |-  V = ( mVR ` T )
2 mvhfval.y
 |-  Y = ( mType ` T )
3 mvhfval.h
 |-  H = ( mVH ` T )
4 fveq2
 |-  ( t = T -> ( mVR ` t ) = ( mVR ` T ) )
5 4 1 eqtr4di
 |-  ( t = T -> ( mVR ` t ) = V )
6 fveq2
 |-  ( t = T -> ( mType ` t ) = ( mType ` T ) )
7 6 2 eqtr4di
 |-  ( t = T -> ( mType ` t ) = Y )
8 7 fveq1d
 |-  ( t = T -> ( ( mType ` t ) ` v ) = ( Y ` v ) )
9 8 opeq1d
 |-  ( t = T -> <. ( ( mType ` t ) ` v ) , <" v "> >. = <. ( Y ` v ) , <" v "> >. )
10 5 9 mpteq12dv
 |-  ( t = T -> ( v e. ( mVR ` t ) |-> <. ( ( mType ` t ) ` v ) , <" v "> >. ) = ( v e. V |-> <. ( Y ` v ) , <" v "> >. ) )
11 df-mvh
 |-  mVH = ( t e. _V |-> ( v e. ( mVR ` t ) |-> <. ( ( mType ` t ) ` v ) , <" v "> >. ) )
12 10 11 1 mptfvmpt
 |-  ( T e. _V -> ( mVH ` T ) = ( v e. V |-> <. ( Y ` v ) , <" v "> >. ) )
13 mpt0
 |-  ( v e. (/) |-> <. ( Y ` v ) , <" v "> >. ) = (/)
14 13 eqcomi
 |-  (/) = ( v e. (/) |-> <. ( Y ` v ) , <" v "> >. )
15 fvprc
 |-  ( -. T e. _V -> ( mVH ` T ) = (/) )
16 fvprc
 |-  ( -. T e. _V -> ( mVR ` T ) = (/) )
17 1 16 syl5eq
 |-  ( -. T e. _V -> V = (/) )
18 17 mpteq1d
 |-  ( -. T e. _V -> ( v e. V |-> <. ( Y ` v ) , <" v "> >. ) = ( v e. (/) |-> <. ( Y ` v ) , <" v "> >. ) )
19 14 15 18 3eqtr4a
 |-  ( -. T e. _V -> ( mVH ` T ) = ( v e. V |-> <. ( Y ` v ) , <" v "> >. ) )
20 12 19 pm2.61i
 |-  ( mVH ` T ) = ( v e. V |-> <. ( Y ` v ) , <" v "> >. )
21 3 20 eqtri
 |-  H = ( v e. V |-> <. ( Y ` v ) , <" v "> >. )