Step |
Hyp |
Ref |
Expression |
1 |
|
mvhfval.v |
|- V = ( mVR ` T ) |
2 |
|
mvhfval.y |
|- Y = ( mType ` T ) |
3 |
|
mvhfval.h |
|- H = ( mVH ` T ) |
4 |
|
fveq2 |
|- ( t = T -> ( mVR ` t ) = ( mVR ` T ) ) |
5 |
4 1
|
eqtr4di |
|- ( t = T -> ( mVR ` t ) = V ) |
6 |
|
fveq2 |
|- ( t = T -> ( mType ` t ) = ( mType ` T ) ) |
7 |
6 2
|
eqtr4di |
|- ( t = T -> ( mType ` t ) = Y ) |
8 |
7
|
fveq1d |
|- ( t = T -> ( ( mType ` t ) ` v ) = ( Y ` v ) ) |
9 |
8
|
opeq1d |
|- ( t = T -> <. ( ( mType ` t ) ` v ) , <" v "> >. = <. ( Y ` v ) , <" v "> >. ) |
10 |
5 9
|
mpteq12dv |
|- ( t = T -> ( v e. ( mVR ` t ) |-> <. ( ( mType ` t ) ` v ) , <" v "> >. ) = ( v e. V |-> <. ( Y ` v ) , <" v "> >. ) ) |
11 |
|
df-mvh |
|- mVH = ( t e. _V |-> ( v e. ( mVR ` t ) |-> <. ( ( mType ` t ) ` v ) , <" v "> >. ) ) |
12 |
10 11 1
|
mptfvmpt |
|- ( T e. _V -> ( mVH ` T ) = ( v e. V |-> <. ( Y ` v ) , <" v "> >. ) ) |
13 |
|
mpt0 |
|- ( v e. (/) |-> <. ( Y ` v ) , <" v "> >. ) = (/) |
14 |
13
|
eqcomi |
|- (/) = ( v e. (/) |-> <. ( Y ` v ) , <" v "> >. ) |
15 |
|
fvprc |
|- ( -. T e. _V -> ( mVH ` T ) = (/) ) |
16 |
|
fvprc |
|- ( -. T e. _V -> ( mVR ` T ) = (/) ) |
17 |
1 16
|
syl5eq |
|- ( -. T e. _V -> V = (/) ) |
18 |
17
|
mpteq1d |
|- ( -. T e. _V -> ( v e. V |-> <. ( Y ` v ) , <" v "> >. ) = ( v e. (/) |-> <. ( Y ` v ) , <" v "> >. ) ) |
19 |
14 15 18
|
3eqtr4a |
|- ( -. T e. _V -> ( mVH ` T ) = ( v e. V |-> <. ( Y ` v ) , <" v "> >. ) ) |
20 |
12 19
|
pm2.61i |
|- ( mVH ` T ) = ( v e. V |-> <. ( Y ` v ) , <" v "> >. ) |
21 |
3 20
|
eqtri |
|- H = ( v e. V |-> <. ( Y ` v ) , <" v "> >. ) |