Metamath Proof Explorer


Theorem mvhfval

Description: Value of the function mapping variables to their corresponding variable expressions. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mvhfval.v 𝑉 = ( mVR ‘ 𝑇 )
mvhfval.y 𝑌 = ( mType ‘ 𝑇 )
mvhfval.h 𝐻 = ( mVH ‘ 𝑇 )
Assertion mvhfval 𝐻 = ( 𝑣𝑉 ↦ ⟨ ( 𝑌𝑣 ) , ⟨“ 𝑣 ”⟩ ⟩ )

Proof

Step Hyp Ref Expression
1 mvhfval.v 𝑉 = ( mVR ‘ 𝑇 )
2 mvhfval.y 𝑌 = ( mType ‘ 𝑇 )
3 mvhfval.h 𝐻 = ( mVH ‘ 𝑇 )
4 fveq2 ( 𝑡 = 𝑇 → ( mVR ‘ 𝑡 ) = ( mVR ‘ 𝑇 ) )
5 4 1 eqtr4di ( 𝑡 = 𝑇 → ( mVR ‘ 𝑡 ) = 𝑉 )
6 fveq2 ( 𝑡 = 𝑇 → ( mType ‘ 𝑡 ) = ( mType ‘ 𝑇 ) )
7 6 2 eqtr4di ( 𝑡 = 𝑇 → ( mType ‘ 𝑡 ) = 𝑌 )
8 7 fveq1d ( 𝑡 = 𝑇 → ( ( mType ‘ 𝑡 ) ‘ 𝑣 ) = ( 𝑌𝑣 ) )
9 8 opeq1d ( 𝑡 = 𝑇 → ⟨ ( ( mType ‘ 𝑡 ) ‘ 𝑣 ) , ⟨“ 𝑣 ”⟩ ⟩ = ⟨ ( 𝑌𝑣 ) , ⟨“ 𝑣 ”⟩ ⟩ )
10 5 9 mpteq12dv ( 𝑡 = 𝑇 → ( 𝑣 ∈ ( mVR ‘ 𝑡 ) ↦ ⟨ ( ( mType ‘ 𝑡 ) ‘ 𝑣 ) , ⟨“ 𝑣 ”⟩ ⟩ ) = ( 𝑣𝑉 ↦ ⟨ ( 𝑌𝑣 ) , ⟨“ 𝑣 ”⟩ ⟩ ) )
11 df-mvh mVH = ( 𝑡 ∈ V ↦ ( 𝑣 ∈ ( mVR ‘ 𝑡 ) ↦ ⟨ ( ( mType ‘ 𝑡 ) ‘ 𝑣 ) , ⟨“ 𝑣 ”⟩ ⟩ ) )
12 10 11 1 mptfvmpt ( 𝑇 ∈ V → ( mVH ‘ 𝑇 ) = ( 𝑣𝑉 ↦ ⟨ ( 𝑌𝑣 ) , ⟨“ 𝑣 ”⟩ ⟩ ) )
13 mpt0 ( 𝑣 ∈ ∅ ↦ ⟨ ( 𝑌𝑣 ) , ⟨“ 𝑣 ”⟩ ⟩ ) = ∅
14 13 eqcomi ∅ = ( 𝑣 ∈ ∅ ↦ ⟨ ( 𝑌𝑣 ) , ⟨“ 𝑣 ”⟩ ⟩ )
15 fvprc ( ¬ 𝑇 ∈ V → ( mVH ‘ 𝑇 ) = ∅ )
16 fvprc ( ¬ 𝑇 ∈ V → ( mVR ‘ 𝑇 ) = ∅ )
17 1 16 syl5eq ( ¬ 𝑇 ∈ V → 𝑉 = ∅ )
18 17 mpteq1d ( ¬ 𝑇 ∈ V → ( 𝑣𝑉 ↦ ⟨ ( 𝑌𝑣 ) , ⟨“ 𝑣 ”⟩ ⟩ ) = ( 𝑣 ∈ ∅ ↦ ⟨ ( 𝑌𝑣 ) , ⟨“ 𝑣 ”⟩ ⟩ ) )
19 14 15 18 3eqtr4a ( ¬ 𝑇 ∈ V → ( mVH ‘ 𝑇 ) = ( 𝑣𝑉 ↦ ⟨ ( 𝑌𝑣 ) , ⟨“ 𝑣 ”⟩ ⟩ ) )
20 12 19 pm2.61i ( mVH ‘ 𝑇 ) = ( 𝑣𝑉 ↦ ⟨ ( 𝑌𝑣 ) , ⟨“ 𝑣 ”⟩ ⟩ )
21 3 20 eqtri 𝐻 = ( 𝑣𝑉 ↦ ⟨ ( 𝑌𝑣 ) , ⟨“ 𝑣 ”⟩ ⟩ )