Metamath Proof Explorer


Theorem mvhval

Description: Value of the function mapping variables to their corresponding variable expressions. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mvhfval.v 𝑉 = ( mVR ‘ 𝑇 )
mvhfval.y 𝑌 = ( mType ‘ 𝑇 )
mvhfval.h 𝐻 = ( mVH ‘ 𝑇 )
Assertion mvhval ( 𝑋𝑉 → ( 𝐻𝑋 ) = ⟨ ( 𝑌𝑋 ) , ⟨“ 𝑋 ”⟩ ⟩ )

Proof

Step Hyp Ref Expression
1 mvhfval.v 𝑉 = ( mVR ‘ 𝑇 )
2 mvhfval.y 𝑌 = ( mType ‘ 𝑇 )
3 mvhfval.h 𝐻 = ( mVH ‘ 𝑇 )
4 fveq2 ( 𝑣 = 𝑋 → ( 𝑌𝑣 ) = ( 𝑌𝑋 ) )
5 s1eq ( 𝑣 = 𝑋 → ⟨“ 𝑣 ”⟩ = ⟨“ 𝑋 ”⟩ )
6 4 5 opeq12d ( 𝑣 = 𝑋 → ⟨ ( 𝑌𝑣 ) , ⟨“ 𝑣 ”⟩ ⟩ = ⟨ ( 𝑌𝑋 ) , ⟨“ 𝑋 ”⟩ ⟩ )
7 1 2 3 mvhfval 𝐻 = ( 𝑣𝑉 ↦ ⟨ ( 𝑌𝑣 ) , ⟨“ 𝑣 ”⟩ ⟩ )
8 opex ⟨ ( 𝑌𝑋 ) , ⟨“ 𝑋 ”⟩ ⟩ ∈ V
9 6 7 8 fvmpt ( 𝑋𝑉 → ( 𝐻𝑋 ) = ⟨ ( 𝑌𝑋 ) , ⟨“ 𝑋 ”⟩ ⟩ )