Metamath Proof Explorer


Theorem mvhval

Description: Value of the function mapping variables to their corresponding variable expressions. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mvhfval.v
|- V = ( mVR ` T )
mvhfval.y
|- Y = ( mType ` T )
mvhfval.h
|- H = ( mVH ` T )
Assertion mvhval
|- ( X e. V -> ( H ` X ) = <. ( Y ` X ) , <" X "> >. )

Proof

Step Hyp Ref Expression
1 mvhfval.v
 |-  V = ( mVR ` T )
2 mvhfval.y
 |-  Y = ( mType ` T )
3 mvhfval.h
 |-  H = ( mVH ` T )
4 fveq2
 |-  ( v = X -> ( Y ` v ) = ( Y ` X ) )
5 s1eq
 |-  ( v = X -> <" v "> = <" X "> )
6 4 5 opeq12d
 |-  ( v = X -> <. ( Y ` v ) , <" v "> >. = <. ( Y ` X ) , <" X "> >. )
7 1 2 3 mvhfval
 |-  H = ( v e. V |-> <. ( Y ` v ) , <" v "> >. )
8 opex
 |-  <. ( Y ` X ) , <" X "> >. e. _V
9 6 7 8 fvmpt
 |-  ( X e. V -> ( H ` X ) = <. ( Y ` X ) , <" X "> >. )