Step |
Hyp |
Ref |
Expression |
1 |
|
mvhf.v |
⊢ 𝑉 = ( mVR ‘ 𝑇 ) |
2 |
|
mvhf.e |
⊢ 𝐸 = ( mEx ‘ 𝑇 ) |
3 |
|
mvhf.h |
⊢ 𝐻 = ( mVH ‘ 𝑇 ) |
4 |
|
eqid |
⊢ ( mTC ‘ 𝑇 ) = ( mTC ‘ 𝑇 ) |
5 |
|
eqid |
⊢ ( mType ‘ 𝑇 ) = ( mType ‘ 𝑇 ) |
6 |
1 4 5
|
mtyf2 |
⊢ ( 𝑇 ∈ mFS → ( mType ‘ 𝑇 ) : 𝑉 ⟶ ( mTC ‘ 𝑇 ) ) |
7 |
6
|
ffvelrnda |
⊢ ( ( 𝑇 ∈ mFS ∧ 𝑣 ∈ 𝑉 ) → ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ∈ ( mTC ‘ 𝑇 ) ) |
8 |
|
elun2 |
⊢ ( 𝑣 ∈ 𝑉 → 𝑣 ∈ ( ( mCN ‘ 𝑇 ) ∪ 𝑉 ) ) |
9 |
8
|
adantl |
⊢ ( ( 𝑇 ∈ mFS ∧ 𝑣 ∈ 𝑉 ) → 𝑣 ∈ ( ( mCN ‘ 𝑇 ) ∪ 𝑉 ) ) |
10 |
9
|
s1cld |
⊢ ( ( 𝑇 ∈ mFS ∧ 𝑣 ∈ 𝑉 ) → 〈“ 𝑣 ”〉 ∈ Word ( ( mCN ‘ 𝑇 ) ∪ 𝑉 ) ) |
11 |
|
eqid |
⊢ ( mCN ‘ 𝑇 ) = ( mCN ‘ 𝑇 ) |
12 |
|
eqid |
⊢ ( mREx ‘ 𝑇 ) = ( mREx ‘ 𝑇 ) |
13 |
11 1 12
|
mrexval |
⊢ ( 𝑇 ∈ mFS → ( mREx ‘ 𝑇 ) = Word ( ( mCN ‘ 𝑇 ) ∪ 𝑉 ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝑇 ∈ mFS ∧ 𝑣 ∈ 𝑉 ) → ( mREx ‘ 𝑇 ) = Word ( ( mCN ‘ 𝑇 ) ∪ 𝑉 ) ) |
15 |
10 14
|
eleqtrrd |
⊢ ( ( 𝑇 ∈ mFS ∧ 𝑣 ∈ 𝑉 ) → 〈“ 𝑣 ”〉 ∈ ( mREx ‘ 𝑇 ) ) |
16 |
|
opelxpi |
⊢ ( ( ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) ∈ ( mTC ‘ 𝑇 ) ∧ 〈“ 𝑣 ”〉 ∈ ( mREx ‘ 𝑇 ) ) → 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 〈“ 𝑣 ”〉 〉 ∈ ( ( mTC ‘ 𝑇 ) × ( mREx ‘ 𝑇 ) ) ) |
17 |
7 15 16
|
syl2anc |
⊢ ( ( 𝑇 ∈ mFS ∧ 𝑣 ∈ 𝑉 ) → 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 〈“ 𝑣 ”〉 〉 ∈ ( ( mTC ‘ 𝑇 ) × ( mREx ‘ 𝑇 ) ) ) |
18 |
4 2 12
|
mexval |
⊢ 𝐸 = ( ( mTC ‘ 𝑇 ) × ( mREx ‘ 𝑇 ) ) |
19 |
17 18
|
eleqtrrdi |
⊢ ( ( 𝑇 ∈ mFS ∧ 𝑣 ∈ 𝑉 ) → 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 〈“ 𝑣 ”〉 〉 ∈ 𝐸 ) |
20 |
1 5 3
|
mvhfval |
⊢ 𝐻 = ( 𝑣 ∈ 𝑉 ↦ 〈 ( ( mType ‘ 𝑇 ) ‘ 𝑣 ) , 〈“ 𝑣 ”〉 〉 ) |
21 |
19 20
|
fmptd |
⊢ ( 𝑇 ∈ mFS → 𝐻 : 𝑉 ⟶ 𝐸 ) |