| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mvhf.v |  |-  V = ( mVR ` T ) | 
						
							| 2 |  | mvhf.e |  |-  E = ( mEx ` T ) | 
						
							| 3 |  | mvhf.h |  |-  H = ( mVH ` T ) | 
						
							| 4 | 1 2 3 | mvhf |  |-  ( T e. mFS -> H : V --> E ) | 
						
							| 5 |  | eqid |  |-  ( mType ` T ) = ( mType ` T ) | 
						
							| 6 | 1 5 3 | mvhval |  |-  ( v e. V -> ( H ` v ) = <. ( ( mType ` T ) ` v ) , <" v "> >. ) | 
						
							| 7 | 1 5 3 | mvhval |  |-  ( w e. V -> ( H ` w ) = <. ( ( mType ` T ) ` w ) , <" w "> >. ) | 
						
							| 8 | 6 7 | eqeqan12d |  |-  ( ( v e. V /\ w e. V ) -> ( ( H ` v ) = ( H ` w ) <-> <. ( ( mType ` T ) ` v ) , <" v "> >. = <. ( ( mType ` T ) ` w ) , <" w "> >. ) ) | 
						
							| 9 | 8 | adantl |  |-  ( ( T e. mFS /\ ( v e. V /\ w e. V ) ) -> ( ( H ` v ) = ( H ` w ) <-> <. ( ( mType ` T ) ` v ) , <" v "> >. = <. ( ( mType ` T ) ` w ) , <" w "> >. ) ) | 
						
							| 10 |  | fvex |  |-  ( ( mType ` T ) ` v ) e. _V | 
						
							| 11 |  | s1cli |  |-  <" v "> e. Word _V | 
						
							| 12 | 11 | elexi |  |-  <" v "> e. _V | 
						
							| 13 | 10 12 | opth |  |-  ( <. ( ( mType ` T ) ` v ) , <" v "> >. = <. ( ( mType ` T ) ` w ) , <" w "> >. <-> ( ( ( mType ` T ) ` v ) = ( ( mType ` T ) ` w ) /\ <" v "> = <" w "> ) ) | 
						
							| 14 | 13 | simprbi |  |-  ( <. ( ( mType ` T ) ` v ) , <" v "> >. = <. ( ( mType ` T ) ` w ) , <" w "> >. -> <" v "> = <" w "> ) | 
						
							| 15 |  | s111 |  |-  ( ( v e. V /\ w e. V ) -> ( <" v "> = <" w "> <-> v = w ) ) | 
						
							| 16 | 15 | adantl |  |-  ( ( T e. mFS /\ ( v e. V /\ w e. V ) ) -> ( <" v "> = <" w "> <-> v = w ) ) | 
						
							| 17 | 14 16 | imbitrid |  |-  ( ( T e. mFS /\ ( v e. V /\ w e. V ) ) -> ( <. ( ( mType ` T ) ` v ) , <" v "> >. = <. ( ( mType ` T ) ` w ) , <" w "> >. -> v = w ) ) | 
						
							| 18 | 9 17 | sylbid |  |-  ( ( T e. mFS /\ ( v e. V /\ w e. V ) ) -> ( ( H ` v ) = ( H ` w ) -> v = w ) ) | 
						
							| 19 | 18 | ralrimivva |  |-  ( T e. mFS -> A. v e. V A. w e. V ( ( H ` v ) = ( H ` w ) -> v = w ) ) | 
						
							| 20 |  | dff13 |  |-  ( H : V -1-1-> E <-> ( H : V --> E /\ A. v e. V A. w e. V ( ( H ` v ) = ( H ` w ) -> v = w ) ) ) | 
						
							| 21 | 4 19 20 | sylanbrc |  |-  ( T e. mFS -> H : V -1-1-> E ) |