Step |
Hyp |
Ref |
Expression |
1 |
|
mvhf.v |
|- V = ( mVR ` T ) |
2 |
|
mvhf.e |
|- E = ( mEx ` T ) |
3 |
|
mvhf.h |
|- H = ( mVH ` T ) |
4 |
1 2 3
|
mvhf |
|- ( T e. mFS -> H : V --> E ) |
5 |
|
eqid |
|- ( mType ` T ) = ( mType ` T ) |
6 |
1 5 3
|
mvhval |
|- ( v e. V -> ( H ` v ) = <. ( ( mType ` T ) ` v ) , <" v "> >. ) |
7 |
1 5 3
|
mvhval |
|- ( w e. V -> ( H ` w ) = <. ( ( mType ` T ) ` w ) , <" w "> >. ) |
8 |
6 7
|
eqeqan12d |
|- ( ( v e. V /\ w e. V ) -> ( ( H ` v ) = ( H ` w ) <-> <. ( ( mType ` T ) ` v ) , <" v "> >. = <. ( ( mType ` T ) ` w ) , <" w "> >. ) ) |
9 |
8
|
adantl |
|- ( ( T e. mFS /\ ( v e. V /\ w e. V ) ) -> ( ( H ` v ) = ( H ` w ) <-> <. ( ( mType ` T ) ` v ) , <" v "> >. = <. ( ( mType ` T ) ` w ) , <" w "> >. ) ) |
10 |
|
fvex |
|- ( ( mType ` T ) ` v ) e. _V |
11 |
|
s1cli |
|- <" v "> e. Word _V |
12 |
11
|
elexi |
|- <" v "> e. _V |
13 |
10 12
|
opth |
|- ( <. ( ( mType ` T ) ` v ) , <" v "> >. = <. ( ( mType ` T ) ` w ) , <" w "> >. <-> ( ( ( mType ` T ) ` v ) = ( ( mType ` T ) ` w ) /\ <" v "> = <" w "> ) ) |
14 |
13
|
simprbi |
|- ( <. ( ( mType ` T ) ` v ) , <" v "> >. = <. ( ( mType ` T ) ` w ) , <" w "> >. -> <" v "> = <" w "> ) |
15 |
|
s111 |
|- ( ( v e. V /\ w e. V ) -> ( <" v "> = <" w "> <-> v = w ) ) |
16 |
15
|
adantl |
|- ( ( T e. mFS /\ ( v e. V /\ w e. V ) ) -> ( <" v "> = <" w "> <-> v = w ) ) |
17 |
14 16
|
syl5ib |
|- ( ( T e. mFS /\ ( v e. V /\ w e. V ) ) -> ( <. ( ( mType ` T ) ` v ) , <" v "> >. = <. ( ( mType ` T ) ` w ) , <" w "> >. -> v = w ) ) |
18 |
9 17
|
sylbid |
|- ( ( T e. mFS /\ ( v e. V /\ w e. V ) ) -> ( ( H ` v ) = ( H ` w ) -> v = w ) ) |
19 |
18
|
ralrimivva |
|- ( T e. mFS -> A. v e. V A. w e. V ( ( H ` v ) = ( H ` w ) -> v = w ) ) |
20 |
|
dff13 |
|- ( H : V -1-1-> E <-> ( H : V --> E /\ A. v e. V A. w e. V ( ( H ` v ) = ( H ` w ) -> v = w ) ) ) |
21 |
4 19 20
|
sylanbrc |
|- ( T e. mFS -> H : V -1-1-> E ) |