Metamath Proof Explorer


Theorem msubff1o

Description: When restricted to complete mappings, the substitution-producing function is bijective to the set of all substitutions. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses msubff1.v V=mVRT
msubff1.r R=mRExT
msubff1.s S=mSubstT
Assertion msubff1o TmFSSRV:RV1-1 ontoranS

Proof

Step Hyp Ref Expression
1 msubff1.v V=mVRT
2 msubff1.r R=mRExT
3 msubff1.s S=mSubstT
4 eqid mExT=mExT
5 1 2 3 4 msubff1 TmFSSRV:RV1-1mExTmExT
6 f1f1orn SRV:RV1-1mExTmExTSRV:RV1-1 ontoranSRV
7 5 6 syl TmFSSRV:RV1-1 ontoranSRV
8 1 2 3 msubrn ranS=SRV
9 df-ima SRV=ranSRV
10 8 9 eqtri ranS=ranSRV
11 f1oeq3 ranS=ranSRVSRV:RV1-1 ontoranSSRV:RV1-1 ontoranSRV
12 10 11 ax-mp SRV:RV1-1 ontoranSSRV:RV1-1 ontoranSRV
13 7 12 sylibr TmFSSRV:RV1-1 ontoranS