Metamath Proof Explorer


Theorem msubff1o

Description: When restricted to complete mappings, the substitution-producing function is bijective to the set of all substitutions. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses msubff1.v V = mVR T
msubff1.r R = mREx T
msubff1.s S = mSubst T
Assertion msubff1o T mFS S R V : R V 1-1 onto ran S

Proof

Step Hyp Ref Expression
1 msubff1.v V = mVR T
2 msubff1.r R = mREx T
3 msubff1.s S = mSubst T
4 eqid mEx T = mEx T
5 1 2 3 4 msubff1 T mFS S R V : R V 1-1 mEx T mEx T
6 f1f1orn S R V : R V 1-1 mEx T mEx T S R V : R V 1-1 onto ran S R V
7 5 6 syl T mFS S R V : R V 1-1 onto ran S R V
8 1 2 3 msubrn ran S = S R V
9 df-ima S R V = ran S R V
10 8 9 eqtri ran S = ran S R V
11 f1oeq3 ran S = ran S R V S R V : R V 1-1 onto ran S S R V : R V 1-1 onto ran S R V
12 10 11 ax-mp S R V : R V 1-1 onto ran S S R V : R V 1-1 onto ran S R V
13 7 12 sylibr T mFS S R V : R V 1-1 onto ran S