Description: When restricted to complete mappings, the substitution-producing function is bijective to the set of all substitutions. (Contributed by Mario Carneiro, 18-Jul-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | msubff1.v | |
|
msubff1.r | |
||
msubff1.s | |
||
Assertion | msubff1o | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | msubff1.v | |
|
2 | msubff1.r | |
|
3 | msubff1.s | |
|
4 | eqid | |
|
5 | 1 2 3 4 | msubff1 | |
6 | f1f1orn | |
|
7 | 5 6 | syl | |
8 | 1 2 3 | msubrn | |
9 | df-ima | |
|
10 | 8 9 | eqtri | |
11 | f1oeq3 | |
|
12 | 10 11 | ax-mp | |
13 | 7 12 | sylibr | |