Step |
Hyp |
Ref |
Expression |
1 |
|
msubff.v |
|- V = ( mVR ` T ) |
2 |
|
msubff.r |
|- R = ( mREx ` T ) |
3 |
|
msubff.s |
|- S = ( mSubst ` T ) |
4 |
|
eqid |
|- ( mEx ` T ) = ( mEx ` T ) |
5 |
|
eqid |
|- ( mRSubst ` T ) = ( mRSubst ` T ) |
6 |
1 2 3 4 5
|
msubffval |
|- ( T e. _V -> S = ( f e. ( R ^pm V ) |-> ( e e. ( mEx ` T ) |-> <. ( 1st ` e ) , ( ( ( mRSubst ` T ) ` f ) ` ( 2nd ` e ) ) >. ) ) ) |
7 |
6
|
rneqd |
|- ( T e. _V -> ran S = ran ( f e. ( R ^pm V ) |-> ( e e. ( mEx ` T ) |-> <. ( 1st ` e ) , ( ( ( mRSubst ` T ) ` f ) ` ( 2nd ` e ) ) >. ) ) ) |
8 |
1 2 5
|
mrsubff |
|- ( T e. _V -> ( mRSubst ` T ) : ( R ^pm V ) --> ( R ^m R ) ) |
9 |
8
|
adantr |
|- ( ( T e. _V /\ f e. ( R ^pm V ) ) -> ( mRSubst ` T ) : ( R ^pm V ) --> ( R ^m R ) ) |
10 |
9
|
ffund |
|- ( ( T e. _V /\ f e. ( R ^pm V ) ) -> Fun ( mRSubst ` T ) ) |
11 |
8
|
ffnd |
|- ( T e. _V -> ( mRSubst ` T ) Fn ( R ^pm V ) ) |
12 |
|
fnfvelrn |
|- ( ( ( mRSubst ` T ) Fn ( R ^pm V ) /\ f e. ( R ^pm V ) ) -> ( ( mRSubst ` T ) ` f ) e. ran ( mRSubst ` T ) ) |
13 |
11 12
|
sylan |
|- ( ( T e. _V /\ f e. ( R ^pm V ) ) -> ( ( mRSubst ` T ) ` f ) e. ran ( mRSubst ` T ) ) |
14 |
1 2 5
|
mrsubrn |
|- ran ( mRSubst ` T ) = ( ( mRSubst ` T ) " ( R ^m V ) ) |
15 |
13 14
|
eleqtrdi |
|- ( ( T e. _V /\ f e. ( R ^pm V ) ) -> ( ( mRSubst ` T ) ` f ) e. ( ( mRSubst ` T ) " ( R ^m V ) ) ) |
16 |
|
fvelima |
|- ( ( Fun ( mRSubst ` T ) /\ ( ( mRSubst ` T ) ` f ) e. ( ( mRSubst ` T ) " ( R ^m V ) ) ) -> E. g e. ( R ^m V ) ( ( mRSubst ` T ) ` g ) = ( ( mRSubst ` T ) ` f ) ) |
17 |
10 15 16
|
syl2anc |
|- ( ( T e. _V /\ f e. ( R ^pm V ) ) -> E. g e. ( R ^m V ) ( ( mRSubst ` T ) ` g ) = ( ( mRSubst ` T ) ` f ) ) |
18 |
|
elmapi |
|- ( g e. ( R ^m V ) -> g : V --> R ) |
19 |
18
|
adantl |
|- ( ( T e. _V /\ g e. ( R ^m V ) ) -> g : V --> R ) |
20 |
|
ssid |
|- V C_ V |
21 |
1 2 3 4 5
|
msubfval |
|- ( ( g : V --> R /\ V C_ V ) -> ( S ` g ) = ( e e. ( mEx ` T ) |-> <. ( 1st ` e ) , ( ( ( mRSubst ` T ) ` g ) ` ( 2nd ` e ) ) >. ) ) |
22 |
19 20 21
|
sylancl |
|- ( ( T e. _V /\ g e. ( R ^m V ) ) -> ( S ` g ) = ( e e. ( mEx ` T ) |-> <. ( 1st ` e ) , ( ( ( mRSubst ` T ) ` g ) ` ( 2nd ` e ) ) >. ) ) |
23 |
|
fvex |
|- ( mEx ` T ) e. _V |
24 |
23
|
mptex |
|- ( e e. ( mEx ` T ) |-> <. ( 1st ` e ) , ( ( ( mRSubst ` T ) ` f ) ` ( 2nd ` e ) ) >. ) e. _V |
25 |
|
eqid |
|- ( f e. ( R ^pm V ) |-> ( e e. ( mEx ` T ) |-> <. ( 1st ` e ) , ( ( ( mRSubst ` T ) ` f ) ` ( 2nd ` e ) ) >. ) ) = ( f e. ( R ^pm V ) |-> ( e e. ( mEx ` T ) |-> <. ( 1st ` e ) , ( ( ( mRSubst ` T ) ` f ) ` ( 2nd ` e ) ) >. ) ) |
26 |
24 25
|
fnmpti |
|- ( f e. ( R ^pm V ) |-> ( e e. ( mEx ` T ) |-> <. ( 1st ` e ) , ( ( ( mRSubst ` T ) ` f ) ` ( 2nd ` e ) ) >. ) ) Fn ( R ^pm V ) |
27 |
6
|
fneq1d |
|- ( T e. _V -> ( S Fn ( R ^pm V ) <-> ( f e. ( R ^pm V ) |-> ( e e. ( mEx ` T ) |-> <. ( 1st ` e ) , ( ( ( mRSubst ` T ) ` f ) ` ( 2nd ` e ) ) >. ) ) Fn ( R ^pm V ) ) ) |
28 |
26 27
|
mpbiri |
|- ( T e. _V -> S Fn ( R ^pm V ) ) |
29 |
28
|
adantr |
|- ( ( T e. _V /\ g e. ( R ^m V ) ) -> S Fn ( R ^pm V ) ) |
30 |
|
mapsspm |
|- ( R ^m V ) C_ ( R ^pm V ) |
31 |
30
|
a1i |
|- ( ( T e. _V /\ g e. ( R ^m V ) ) -> ( R ^m V ) C_ ( R ^pm V ) ) |
32 |
|
simpr |
|- ( ( T e. _V /\ g e. ( R ^m V ) ) -> g e. ( R ^m V ) ) |
33 |
|
fnfvima |
|- ( ( S Fn ( R ^pm V ) /\ ( R ^m V ) C_ ( R ^pm V ) /\ g e. ( R ^m V ) ) -> ( S ` g ) e. ( S " ( R ^m V ) ) ) |
34 |
29 31 32 33
|
syl3anc |
|- ( ( T e. _V /\ g e. ( R ^m V ) ) -> ( S ` g ) e. ( S " ( R ^m V ) ) ) |
35 |
22 34
|
eqeltrrd |
|- ( ( T e. _V /\ g e. ( R ^m V ) ) -> ( e e. ( mEx ` T ) |-> <. ( 1st ` e ) , ( ( ( mRSubst ` T ) ` g ) ` ( 2nd ` e ) ) >. ) e. ( S " ( R ^m V ) ) ) |
36 |
35
|
adantlr |
|- ( ( ( T e. _V /\ f e. ( R ^pm V ) ) /\ g e. ( R ^m V ) ) -> ( e e. ( mEx ` T ) |-> <. ( 1st ` e ) , ( ( ( mRSubst ` T ) ` g ) ` ( 2nd ` e ) ) >. ) e. ( S " ( R ^m V ) ) ) |
37 |
|
fveq1 |
|- ( ( ( mRSubst ` T ) ` g ) = ( ( mRSubst ` T ) ` f ) -> ( ( ( mRSubst ` T ) ` g ) ` ( 2nd ` e ) ) = ( ( ( mRSubst ` T ) ` f ) ` ( 2nd ` e ) ) ) |
38 |
37
|
opeq2d |
|- ( ( ( mRSubst ` T ) ` g ) = ( ( mRSubst ` T ) ` f ) -> <. ( 1st ` e ) , ( ( ( mRSubst ` T ) ` g ) ` ( 2nd ` e ) ) >. = <. ( 1st ` e ) , ( ( ( mRSubst ` T ) ` f ) ` ( 2nd ` e ) ) >. ) |
39 |
38
|
mpteq2dv |
|- ( ( ( mRSubst ` T ) ` g ) = ( ( mRSubst ` T ) ` f ) -> ( e e. ( mEx ` T ) |-> <. ( 1st ` e ) , ( ( ( mRSubst ` T ) ` g ) ` ( 2nd ` e ) ) >. ) = ( e e. ( mEx ` T ) |-> <. ( 1st ` e ) , ( ( ( mRSubst ` T ) ` f ) ` ( 2nd ` e ) ) >. ) ) |
40 |
39
|
eleq1d |
|- ( ( ( mRSubst ` T ) ` g ) = ( ( mRSubst ` T ) ` f ) -> ( ( e e. ( mEx ` T ) |-> <. ( 1st ` e ) , ( ( ( mRSubst ` T ) ` g ) ` ( 2nd ` e ) ) >. ) e. ( S " ( R ^m V ) ) <-> ( e e. ( mEx ` T ) |-> <. ( 1st ` e ) , ( ( ( mRSubst ` T ) ` f ) ` ( 2nd ` e ) ) >. ) e. ( S " ( R ^m V ) ) ) ) |
41 |
36 40
|
syl5ibcom |
|- ( ( ( T e. _V /\ f e. ( R ^pm V ) ) /\ g e. ( R ^m V ) ) -> ( ( ( mRSubst ` T ) ` g ) = ( ( mRSubst ` T ) ` f ) -> ( e e. ( mEx ` T ) |-> <. ( 1st ` e ) , ( ( ( mRSubst ` T ) ` f ) ` ( 2nd ` e ) ) >. ) e. ( S " ( R ^m V ) ) ) ) |
42 |
41
|
rexlimdva |
|- ( ( T e. _V /\ f e. ( R ^pm V ) ) -> ( E. g e. ( R ^m V ) ( ( mRSubst ` T ) ` g ) = ( ( mRSubst ` T ) ` f ) -> ( e e. ( mEx ` T ) |-> <. ( 1st ` e ) , ( ( ( mRSubst ` T ) ` f ) ` ( 2nd ` e ) ) >. ) e. ( S " ( R ^m V ) ) ) ) |
43 |
17 42
|
mpd |
|- ( ( T e. _V /\ f e. ( R ^pm V ) ) -> ( e e. ( mEx ` T ) |-> <. ( 1st ` e ) , ( ( ( mRSubst ` T ) ` f ) ` ( 2nd ` e ) ) >. ) e. ( S " ( R ^m V ) ) ) |
44 |
43
|
fmpttd |
|- ( T e. _V -> ( f e. ( R ^pm V ) |-> ( e e. ( mEx ` T ) |-> <. ( 1st ` e ) , ( ( ( mRSubst ` T ) ` f ) ` ( 2nd ` e ) ) >. ) ) : ( R ^pm V ) --> ( S " ( R ^m V ) ) ) |
45 |
44
|
frnd |
|- ( T e. _V -> ran ( f e. ( R ^pm V ) |-> ( e e. ( mEx ` T ) |-> <. ( 1st ` e ) , ( ( ( mRSubst ` T ) ` f ) ` ( 2nd ` e ) ) >. ) ) C_ ( S " ( R ^m V ) ) ) |
46 |
7 45
|
eqsstrd |
|- ( T e. _V -> ran S C_ ( S " ( R ^m V ) ) ) |
47 |
3
|
rnfvprc |
|- ( -. T e. _V -> ran S = (/) ) |
48 |
|
0ss |
|- (/) C_ ( S " ( R ^m V ) ) |
49 |
47 48
|
eqsstrdi |
|- ( -. T e. _V -> ran S C_ ( S " ( R ^m V ) ) ) |
50 |
46 49
|
pm2.61i |
|- ran S C_ ( S " ( R ^m V ) ) |
51 |
|
imassrn |
|- ( S " ( R ^m V ) ) C_ ran S |
52 |
50 51
|
eqssi |
|- ran S = ( S " ( R ^m V ) ) |