Step |
Hyp |
Ref |
Expression |
1 |
|
msubff.v |
⊢ 𝑉 = ( mVR ‘ 𝑇 ) |
2 |
|
msubff.r |
⊢ 𝑅 = ( mREx ‘ 𝑇 ) |
3 |
|
msubff.s |
⊢ 𝑆 = ( mSubst ‘ 𝑇 ) |
4 |
|
eqid |
⊢ ( mEx ‘ 𝑇 ) = ( mEx ‘ 𝑇 ) |
5 |
|
eqid |
⊢ ( mRSubst ‘ 𝑇 ) = ( mRSubst ‘ 𝑇 ) |
6 |
1 2 3 4 5
|
msubffval |
⊢ ( 𝑇 ∈ V → 𝑆 = ( 𝑓 ∈ ( 𝑅 ↑pm 𝑉 ) ↦ ( 𝑒 ∈ ( mEx ‘ 𝑇 ) ↦ 〈 ( 1st ‘ 𝑒 ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd ‘ 𝑒 ) ) 〉 ) ) ) |
7 |
6
|
rneqd |
⊢ ( 𝑇 ∈ V → ran 𝑆 = ran ( 𝑓 ∈ ( 𝑅 ↑pm 𝑉 ) ↦ ( 𝑒 ∈ ( mEx ‘ 𝑇 ) ↦ 〈 ( 1st ‘ 𝑒 ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd ‘ 𝑒 ) ) 〉 ) ) ) |
8 |
1 2 5
|
mrsubff |
⊢ ( 𝑇 ∈ V → ( mRSubst ‘ 𝑇 ) : ( 𝑅 ↑pm 𝑉 ) ⟶ ( 𝑅 ↑m 𝑅 ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝑇 ∈ V ∧ 𝑓 ∈ ( 𝑅 ↑pm 𝑉 ) ) → ( mRSubst ‘ 𝑇 ) : ( 𝑅 ↑pm 𝑉 ) ⟶ ( 𝑅 ↑m 𝑅 ) ) |
10 |
9
|
ffund |
⊢ ( ( 𝑇 ∈ V ∧ 𝑓 ∈ ( 𝑅 ↑pm 𝑉 ) ) → Fun ( mRSubst ‘ 𝑇 ) ) |
11 |
8
|
ffnd |
⊢ ( 𝑇 ∈ V → ( mRSubst ‘ 𝑇 ) Fn ( 𝑅 ↑pm 𝑉 ) ) |
12 |
|
fnfvelrn |
⊢ ( ( ( mRSubst ‘ 𝑇 ) Fn ( 𝑅 ↑pm 𝑉 ) ∧ 𝑓 ∈ ( 𝑅 ↑pm 𝑉 ) ) → ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ∈ ran ( mRSubst ‘ 𝑇 ) ) |
13 |
11 12
|
sylan |
⊢ ( ( 𝑇 ∈ V ∧ 𝑓 ∈ ( 𝑅 ↑pm 𝑉 ) ) → ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ∈ ran ( mRSubst ‘ 𝑇 ) ) |
14 |
1 2 5
|
mrsubrn |
⊢ ran ( mRSubst ‘ 𝑇 ) = ( ( mRSubst ‘ 𝑇 ) “ ( 𝑅 ↑m 𝑉 ) ) |
15 |
13 14
|
eleqtrdi |
⊢ ( ( 𝑇 ∈ V ∧ 𝑓 ∈ ( 𝑅 ↑pm 𝑉 ) ) → ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ∈ ( ( mRSubst ‘ 𝑇 ) “ ( 𝑅 ↑m 𝑉 ) ) ) |
16 |
|
fvelima |
⊢ ( ( Fun ( mRSubst ‘ 𝑇 ) ∧ ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ∈ ( ( mRSubst ‘ 𝑇 ) “ ( 𝑅 ↑m 𝑉 ) ) ) → ∃ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) = ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ) |
17 |
10 15 16
|
syl2anc |
⊢ ( ( 𝑇 ∈ V ∧ 𝑓 ∈ ( 𝑅 ↑pm 𝑉 ) ) → ∃ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) = ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ) |
18 |
|
elmapi |
⊢ ( 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) → 𝑔 : 𝑉 ⟶ 𝑅 ) |
19 |
18
|
adantl |
⊢ ( ( 𝑇 ∈ V ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) → 𝑔 : 𝑉 ⟶ 𝑅 ) |
20 |
|
ssid |
⊢ 𝑉 ⊆ 𝑉 |
21 |
1 2 3 4 5
|
msubfval |
⊢ ( ( 𝑔 : 𝑉 ⟶ 𝑅 ∧ 𝑉 ⊆ 𝑉 ) → ( 𝑆 ‘ 𝑔 ) = ( 𝑒 ∈ ( mEx ‘ 𝑇 ) ↦ 〈 ( 1st ‘ 𝑒 ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ‘ ( 2nd ‘ 𝑒 ) ) 〉 ) ) |
22 |
19 20 21
|
sylancl |
⊢ ( ( 𝑇 ∈ V ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) → ( 𝑆 ‘ 𝑔 ) = ( 𝑒 ∈ ( mEx ‘ 𝑇 ) ↦ 〈 ( 1st ‘ 𝑒 ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ‘ ( 2nd ‘ 𝑒 ) ) 〉 ) ) |
23 |
|
fvex |
⊢ ( mEx ‘ 𝑇 ) ∈ V |
24 |
23
|
mptex |
⊢ ( 𝑒 ∈ ( mEx ‘ 𝑇 ) ↦ 〈 ( 1st ‘ 𝑒 ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd ‘ 𝑒 ) ) 〉 ) ∈ V |
25 |
|
eqid |
⊢ ( 𝑓 ∈ ( 𝑅 ↑pm 𝑉 ) ↦ ( 𝑒 ∈ ( mEx ‘ 𝑇 ) ↦ 〈 ( 1st ‘ 𝑒 ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd ‘ 𝑒 ) ) 〉 ) ) = ( 𝑓 ∈ ( 𝑅 ↑pm 𝑉 ) ↦ ( 𝑒 ∈ ( mEx ‘ 𝑇 ) ↦ 〈 ( 1st ‘ 𝑒 ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd ‘ 𝑒 ) ) 〉 ) ) |
26 |
24 25
|
fnmpti |
⊢ ( 𝑓 ∈ ( 𝑅 ↑pm 𝑉 ) ↦ ( 𝑒 ∈ ( mEx ‘ 𝑇 ) ↦ 〈 ( 1st ‘ 𝑒 ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd ‘ 𝑒 ) ) 〉 ) ) Fn ( 𝑅 ↑pm 𝑉 ) |
27 |
6
|
fneq1d |
⊢ ( 𝑇 ∈ V → ( 𝑆 Fn ( 𝑅 ↑pm 𝑉 ) ↔ ( 𝑓 ∈ ( 𝑅 ↑pm 𝑉 ) ↦ ( 𝑒 ∈ ( mEx ‘ 𝑇 ) ↦ 〈 ( 1st ‘ 𝑒 ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd ‘ 𝑒 ) ) 〉 ) ) Fn ( 𝑅 ↑pm 𝑉 ) ) ) |
28 |
26 27
|
mpbiri |
⊢ ( 𝑇 ∈ V → 𝑆 Fn ( 𝑅 ↑pm 𝑉 ) ) |
29 |
28
|
adantr |
⊢ ( ( 𝑇 ∈ V ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) → 𝑆 Fn ( 𝑅 ↑pm 𝑉 ) ) |
30 |
|
mapsspm |
⊢ ( 𝑅 ↑m 𝑉 ) ⊆ ( 𝑅 ↑pm 𝑉 ) |
31 |
30
|
a1i |
⊢ ( ( 𝑇 ∈ V ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) → ( 𝑅 ↑m 𝑉 ) ⊆ ( 𝑅 ↑pm 𝑉 ) ) |
32 |
|
simpr |
⊢ ( ( 𝑇 ∈ V ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) → 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) |
33 |
|
fnfvima |
⊢ ( ( 𝑆 Fn ( 𝑅 ↑pm 𝑉 ) ∧ ( 𝑅 ↑m 𝑉 ) ⊆ ( 𝑅 ↑pm 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) → ( 𝑆 ‘ 𝑔 ) ∈ ( 𝑆 “ ( 𝑅 ↑m 𝑉 ) ) ) |
34 |
29 31 32 33
|
syl3anc |
⊢ ( ( 𝑇 ∈ V ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) → ( 𝑆 ‘ 𝑔 ) ∈ ( 𝑆 “ ( 𝑅 ↑m 𝑉 ) ) ) |
35 |
22 34
|
eqeltrrd |
⊢ ( ( 𝑇 ∈ V ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) → ( 𝑒 ∈ ( mEx ‘ 𝑇 ) ↦ 〈 ( 1st ‘ 𝑒 ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ‘ ( 2nd ‘ 𝑒 ) ) 〉 ) ∈ ( 𝑆 “ ( 𝑅 ↑m 𝑉 ) ) ) |
36 |
35
|
adantlr |
⊢ ( ( ( 𝑇 ∈ V ∧ 𝑓 ∈ ( 𝑅 ↑pm 𝑉 ) ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) → ( 𝑒 ∈ ( mEx ‘ 𝑇 ) ↦ 〈 ( 1st ‘ 𝑒 ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ‘ ( 2nd ‘ 𝑒 ) ) 〉 ) ∈ ( 𝑆 “ ( 𝑅 ↑m 𝑉 ) ) ) |
37 |
|
fveq1 |
⊢ ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) = ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) → ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ‘ ( 2nd ‘ 𝑒 ) ) = ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd ‘ 𝑒 ) ) ) |
38 |
37
|
opeq2d |
⊢ ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) = ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) → 〈 ( 1st ‘ 𝑒 ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ‘ ( 2nd ‘ 𝑒 ) ) 〉 = 〈 ( 1st ‘ 𝑒 ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd ‘ 𝑒 ) ) 〉 ) |
39 |
38
|
mpteq2dv |
⊢ ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) = ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) → ( 𝑒 ∈ ( mEx ‘ 𝑇 ) ↦ 〈 ( 1st ‘ 𝑒 ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ‘ ( 2nd ‘ 𝑒 ) ) 〉 ) = ( 𝑒 ∈ ( mEx ‘ 𝑇 ) ↦ 〈 ( 1st ‘ 𝑒 ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd ‘ 𝑒 ) ) 〉 ) ) |
40 |
39
|
eleq1d |
⊢ ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) = ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) → ( ( 𝑒 ∈ ( mEx ‘ 𝑇 ) ↦ 〈 ( 1st ‘ 𝑒 ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) ‘ ( 2nd ‘ 𝑒 ) ) 〉 ) ∈ ( 𝑆 “ ( 𝑅 ↑m 𝑉 ) ) ↔ ( 𝑒 ∈ ( mEx ‘ 𝑇 ) ↦ 〈 ( 1st ‘ 𝑒 ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd ‘ 𝑒 ) ) 〉 ) ∈ ( 𝑆 “ ( 𝑅 ↑m 𝑉 ) ) ) ) |
41 |
36 40
|
syl5ibcom |
⊢ ( ( ( 𝑇 ∈ V ∧ 𝑓 ∈ ( 𝑅 ↑pm 𝑉 ) ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) → ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) = ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) → ( 𝑒 ∈ ( mEx ‘ 𝑇 ) ↦ 〈 ( 1st ‘ 𝑒 ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd ‘ 𝑒 ) ) 〉 ) ∈ ( 𝑆 “ ( 𝑅 ↑m 𝑉 ) ) ) ) |
42 |
41
|
rexlimdva |
⊢ ( ( 𝑇 ∈ V ∧ 𝑓 ∈ ( 𝑅 ↑pm 𝑉 ) ) → ( ∃ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ( ( mRSubst ‘ 𝑇 ) ‘ 𝑔 ) = ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) → ( 𝑒 ∈ ( mEx ‘ 𝑇 ) ↦ 〈 ( 1st ‘ 𝑒 ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd ‘ 𝑒 ) ) 〉 ) ∈ ( 𝑆 “ ( 𝑅 ↑m 𝑉 ) ) ) ) |
43 |
17 42
|
mpd |
⊢ ( ( 𝑇 ∈ V ∧ 𝑓 ∈ ( 𝑅 ↑pm 𝑉 ) ) → ( 𝑒 ∈ ( mEx ‘ 𝑇 ) ↦ 〈 ( 1st ‘ 𝑒 ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd ‘ 𝑒 ) ) 〉 ) ∈ ( 𝑆 “ ( 𝑅 ↑m 𝑉 ) ) ) |
44 |
43
|
fmpttd |
⊢ ( 𝑇 ∈ V → ( 𝑓 ∈ ( 𝑅 ↑pm 𝑉 ) ↦ ( 𝑒 ∈ ( mEx ‘ 𝑇 ) ↦ 〈 ( 1st ‘ 𝑒 ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd ‘ 𝑒 ) ) 〉 ) ) : ( 𝑅 ↑pm 𝑉 ) ⟶ ( 𝑆 “ ( 𝑅 ↑m 𝑉 ) ) ) |
45 |
44
|
frnd |
⊢ ( 𝑇 ∈ V → ran ( 𝑓 ∈ ( 𝑅 ↑pm 𝑉 ) ↦ ( 𝑒 ∈ ( mEx ‘ 𝑇 ) ↦ 〈 ( 1st ‘ 𝑒 ) , ( ( ( mRSubst ‘ 𝑇 ) ‘ 𝑓 ) ‘ ( 2nd ‘ 𝑒 ) ) 〉 ) ) ⊆ ( 𝑆 “ ( 𝑅 ↑m 𝑉 ) ) ) |
46 |
7 45
|
eqsstrd |
⊢ ( 𝑇 ∈ V → ran 𝑆 ⊆ ( 𝑆 “ ( 𝑅 ↑m 𝑉 ) ) ) |
47 |
3
|
rnfvprc |
⊢ ( ¬ 𝑇 ∈ V → ran 𝑆 = ∅ ) |
48 |
|
0ss |
⊢ ∅ ⊆ ( 𝑆 “ ( 𝑅 ↑m 𝑉 ) ) |
49 |
47 48
|
eqsstrdi |
⊢ ( ¬ 𝑇 ∈ V → ran 𝑆 ⊆ ( 𝑆 “ ( 𝑅 ↑m 𝑉 ) ) ) |
50 |
46 49
|
pm2.61i |
⊢ ran 𝑆 ⊆ ( 𝑆 “ ( 𝑅 ↑m 𝑉 ) ) |
51 |
|
imassrn |
⊢ ( 𝑆 “ ( 𝑅 ↑m 𝑉 ) ) ⊆ ran 𝑆 |
52 |
50 51
|
eqssi |
⊢ ran 𝑆 = ( 𝑆 “ ( 𝑅 ↑m 𝑉 ) ) |