| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mrsubvr.v |
⊢ 𝑉 = ( mVR ‘ 𝑇 ) |
| 2 |
|
mrsubvr.r |
⊢ 𝑅 = ( mREx ‘ 𝑇 ) |
| 3 |
|
mrsubvr.s |
⊢ 𝑆 = ( mRSubst ‘ 𝑇 ) |
| 4 |
1 2 3
|
mrsubff |
⊢ ( 𝑇 ∈ 𝑊 → 𝑆 : ( 𝑅 ↑pm 𝑉 ) ⟶ ( 𝑅 ↑m 𝑅 ) ) |
| 5 |
|
mapsspm |
⊢ ( 𝑅 ↑m 𝑉 ) ⊆ ( 𝑅 ↑pm 𝑉 ) |
| 6 |
5
|
a1i |
⊢ ( 𝑇 ∈ 𝑊 → ( 𝑅 ↑m 𝑉 ) ⊆ ( 𝑅 ↑pm 𝑉 ) ) |
| 7 |
4 6
|
fssresd |
⊢ ( 𝑇 ∈ 𝑊 → ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) : ( 𝑅 ↑m 𝑉 ) ⟶ ( 𝑅 ↑m 𝑅 ) ) |
| 8 |
|
fveq1 |
⊢ ( ( 𝑆 ‘ 𝑓 ) = ( 𝑆 ‘ 𝑔 ) → ( ( 𝑆 ‘ 𝑓 ) ‘ 〈“ 𝑣 ”〉 ) = ( ( 𝑆 ‘ 𝑔 ) ‘ 〈“ 𝑣 ”〉 ) ) |
| 9 |
|
simplrl |
⊢ ( ( ( 𝑇 ∈ 𝑊 ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ) |
| 10 |
|
elmapi |
⊢ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) → 𝑓 : 𝑉 ⟶ 𝑅 ) |
| 11 |
9 10
|
syl |
⊢ ( ( ( 𝑇 ∈ 𝑊 ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → 𝑓 : 𝑉 ⟶ 𝑅 ) |
| 12 |
|
ssidd |
⊢ ( ( ( 𝑇 ∈ 𝑊 ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → 𝑉 ⊆ 𝑉 ) |
| 13 |
|
simpr |
⊢ ( ( ( 𝑇 ∈ 𝑊 ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → 𝑣 ∈ 𝑉 ) |
| 14 |
1 2 3
|
mrsubvr |
⊢ ( ( 𝑓 : 𝑉 ⟶ 𝑅 ∧ 𝑉 ⊆ 𝑉 ∧ 𝑣 ∈ 𝑉 ) → ( ( 𝑆 ‘ 𝑓 ) ‘ 〈“ 𝑣 ”〉 ) = ( 𝑓 ‘ 𝑣 ) ) |
| 15 |
11 12 13 14
|
syl3anc |
⊢ ( ( ( 𝑇 ∈ 𝑊 ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → ( ( 𝑆 ‘ 𝑓 ) ‘ 〈“ 𝑣 ”〉 ) = ( 𝑓 ‘ 𝑣 ) ) |
| 16 |
|
simplrr |
⊢ ( ( ( 𝑇 ∈ 𝑊 ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) |
| 17 |
|
elmapi |
⊢ ( 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) → 𝑔 : 𝑉 ⟶ 𝑅 ) |
| 18 |
16 17
|
syl |
⊢ ( ( ( 𝑇 ∈ 𝑊 ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → 𝑔 : 𝑉 ⟶ 𝑅 ) |
| 19 |
1 2 3
|
mrsubvr |
⊢ ( ( 𝑔 : 𝑉 ⟶ 𝑅 ∧ 𝑉 ⊆ 𝑉 ∧ 𝑣 ∈ 𝑉 ) → ( ( 𝑆 ‘ 𝑔 ) ‘ 〈“ 𝑣 ”〉 ) = ( 𝑔 ‘ 𝑣 ) ) |
| 20 |
18 12 13 19
|
syl3anc |
⊢ ( ( ( 𝑇 ∈ 𝑊 ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → ( ( 𝑆 ‘ 𝑔 ) ‘ 〈“ 𝑣 ”〉 ) = ( 𝑔 ‘ 𝑣 ) ) |
| 21 |
15 20
|
eqeq12d |
⊢ ( ( ( 𝑇 ∈ 𝑊 ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → ( ( ( 𝑆 ‘ 𝑓 ) ‘ 〈“ 𝑣 ”〉 ) = ( ( 𝑆 ‘ 𝑔 ) ‘ 〈“ 𝑣 ”〉 ) ↔ ( 𝑓 ‘ 𝑣 ) = ( 𝑔 ‘ 𝑣 ) ) ) |
| 22 |
8 21
|
imbitrid |
⊢ ( ( ( 𝑇 ∈ 𝑊 ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → ( ( 𝑆 ‘ 𝑓 ) = ( 𝑆 ‘ 𝑔 ) → ( 𝑓 ‘ 𝑣 ) = ( 𝑔 ‘ 𝑣 ) ) ) |
| 23 |
22
|
ralrimdva |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) → ( ( 𝑆 ‘ 𝑓 ) = ( 𝑆 ‘ 𝑔 ) → ∀ 𝑣 ∈ 𝑉 ( 𝑓 ‘ 𝑣 ) = ( 𝑔 ‘ 𝑣 ) ) ) |
| 24 |
|
fvres |
⊢ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) → ( ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) ‘ 𝑓 ) = ( 𝑆 ‘ 𝑓 ) ) |
| 25 |
|
fvres |
⊢ ( 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) → ( ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) ‘ 𝑔 ) = ( 𝑆 ‘ 𝑔 ) ) |
| 26 |
24 25
|
eqeqan12d |
⊢ ( ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) → ( ( ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) ‘ 𝑓 ) = ( ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) ‘ 𝑔 ) ↔ ( 𝑆 ‘ 𝑓 ) = ( 𝑆 ‘ 𝑔 ) ) ) |
| 27 |
26
|
adantl |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) → ( ( ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) ‘ 𝑓 ) = ( ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) ‘ 𝑔 ) ↔ ( 𝑆 ‘ 𝑓 ) = ( 𝑆 ‘ 𝑔 ) ) ) |
| 28 |
|
ffn |
⊢ ( 𝑓 : 𝑉 ⟶ 𝑅 → 𝑓 Fn 𝑉 ) |
| 29 |
|
ffn |
⊢ ( 𝑔 : 𝑉 ⟶ 𝑅 → 𝑔 Fn 𝑉 ) |
| 30 |
|
eqfnfv |
⊢ ( ( 𝑓 Fn 𝑉 ∧ 𝑔 Fn 𝑉 ) → ( 𝑓 = 𝑔 ↔ ∀ 𝑣 ∈ 𝑉 ( 𝑓 ‘ 𝑣 ) = ( 𝑔 ‘ 𝑣 ) ) ) |
| 31 |
28 29 30
|
syl2an |
⊢ ( ( 𝑓 : 𝑉 ⟶ 𝑅 ∧ 𝑔 : 𝑉 ⟶ 𝑅 ) → ( 𝑓 = 𝑔 ↔ ∀ 𝑣 ∈ 𝑉 ( 𝑓 ‘ 𝑣 ) = ( 𝑔 ‘ 𝑣 ) ) ) |
| 32 |
10 17 31
|
syl2an |
⊢ ( ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) → ( 𝑓 = 𝑔 ↔ ∀ 𝑣 ∈ 𝑉 ( 𝑓 ‘ 𝑣 ) = ( 𝑔 ‘ 𝑣 ) ) ) |
| 33 |
32
|
adantl |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) → ( 𝑓 = 𝑔 ↔ ∀ 𝑣 ∈ 𝑉 ( 𝑓 ‘ 𝑣 ) = ( 𝑔 ‘ 𝑣 ) ) ) |
| 34 |
23 27 33
|
3imtr4d |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ) ) → ( ( ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) ‘ 𝑓 ) = ( ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) ‘ 𝑔 ) → 𝑓 = 𝑔 ) ) |
| 35 |
34
|
ralrimivva |
⊢ ( 𝑇 ∈ 𝑊 → ∀ 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∀ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ( ( ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) ‘ 𝑓 ) = ( ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) ‘ 𝑔 ) → 𝑓 = 𝑔 ) ) |
| 36 |
|
dff13 |
⊢ ( ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) : ( 𝑅 ↑m 𝑉 ) –1-1→ ( 𝑅 ↑m 𝑅 ) ↔ ( ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) : ( 𝑅 ↑m 𝑉 ) ⟶ ( 𝑅 ↑m 𝑅 ) ∧ ∀ 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ∀ 𝑔 ∈ ( 𝑅 ↑m 𝑉 ) ( ( ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) ‘ 𝑓 ) = ( ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) ‘ 𝑔 ) → 𝑓 = 𝑔 ) ) ) |
| 37 |
7 35 36
|
sylanbrc |
⊢ ( 𝑇 ∈ 𝑊 → ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) : ( 𝑅 ↑m 𝑉 ) –1-1→ ( 𝑅 ↑m 𝑅 ) ) |