| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mrsubvr.v |
⊢ 𝑉 = ( mVR ‘ 𝑇 ) |
| 2 |
|
mrsubvr.r |
⊢ 𝑅 = ( mREx ‘ 𝑇 ) |
| 3 |
|
mrsubvr.s |
⊢ 𝑆 = ( mRSubst ‘ 𝑇 ) |
| 4 |
1 2 3
|
mrsubff1 |
⊢ ( 𝑇 ∈ 𝑊 → ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) : ( 𝑅 ↑m 𝑉 ) –1-1→ ( 𝑅 ↑m 𝑅 ) ) |
| 5 |
|
f1f1orn |
⊢ ( ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) : ( 𝑅 ↑m 𝑉 ) –1-1→ ( 𝑅 ↑m 𝑅 ) → ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) : ( 𝑅 ↑m 𝑉 ) –1-1-onto→ ran ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) ) |
| 6 |
4 5
|
syl |
⊢ ( 𝑇 ∈ 𝑊 → ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) : ( 𝑅 ↑m 𝑉 ) –1-1-onto→ ran ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) ) |
| 7 |
1 2 3
|
mrsubrn |
⊢ ran 𝑆 = ( 𝑆 “ ( 𝑅 ↑m 𝑉 ) ) |
| 8 |
|
df-ima |
⊢ ( 𝑆 “ ( 𝑅 ↑m 𝑉 ) ) = ran ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) |
| 9 |
7 8
|
eqtri |
⊢ ran 𝑆 = ran ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) |
| 10 |
|
f1oeq3 |
⊢ ( ran 𝑆 = ran ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) → ( ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) : ( 𝑅 ↑m 𝑉 ) –1-1-onto→ ran 𝑆 ↔ ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) : ( 𝑅 ↑m 𝑉 ) –1-1-onto→ ran ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) ) ) |
| 11 |
9 10
|
ax-mp |
⊢ ( ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) : ( 𝑅 ↑m 𝑉 ) –1-1-onto→ ran 𝑆 ↔ ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) : ( 𝑅 ↑m 𝑉 ) –1-1-onto→ ran ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) ) |
| 12 |
6 11
|
sylibr |
⊢ ( 𝑇 ∈ 𝑊 → ( 𝑆 ↾ ( 𝑅 ↑m 𝑉 ) ) : ( 𝑅 ↑m 𝑉 ) –1-1-onto→ ran 𝑆 ) |