Metamath Proof Explorer


Theorem mrsubff1o

Description: When restricted to complete mappings, the substitution-producing function is bijective to the set of all substitutions. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mrsubvr.v 𝑉 = ( mVR ‘ 𝑇 )
mrsubvr.r 𝑅 = ( mREx ‘ 𝑇 )
mrsubvr.s 𝑆 = ( mRSubst ‘ 𝑇 )
Assertion mrsubff1o ( 𝑇𝑊 → ( 𝑆 ↾ ( 𝑅m 𝑉 ) ) : ( 𝑅m 𝑉 ) –1-1-onto→ ran 𝑆 )

Proof

Step Hyp Ref Expression
1 mrsubvr.v 𝑉 = ( mVR ‘ 𝑇 )
2 mrsubvr.r 𝑅 = ( mREx ‘ 𝑇 )
3 mrsubvr.s 𝑆 = ( mRSubst ‘ 𝑇 )
4 1 2 3 mrsubff1 ( 𝑇𝑊 → ( 𝑆 ↾ ( 𝑅m 𝑉 ) ) : ( 𝑅m 𝑉 ) –1-1→ ( 𝑅m 𝑅 ) )
5 f1f1orn ( ( 𝑆 ↾ ( 𝑅m 𝑉 ) ) : ( 𝑅m 𝑉 ) –1-1→ ( 𝑅m 𝑅 ) → ( 𝑆 ↾ ( 𝑅m 𝑉 ) ) : ( 𝑅m 𝑉 ) –1-1-onto→ ran ( 𝑆 ↾ ( 𝑅m 𝑉 ) ) )
6 4 5 syl ( 𝑇𝑊 → ( 𝑆 ↾ ( 𝑅m 𝑉 ) ) : ( 𝑅m 𝑉 ) –1-1-onto→ ran ( 𝑆 ↾ ( 𝑅m 𝑉 ) ) )
7 1 2 3 mrsubrn ran 𝑆 = ( 𝑆 “ ( 𝑅m 𝑉 ) )
8 df-ima ( 𝑆 “ ( 𝑅m 𝑉 ) ) = ran ( 𝑆 ↾ ( 𝑅m 𝑉 ) )
9 7 8 eqtri ran 𝑆 = ran ( 𝑆 ↾ ( 𝑅m 𝑉 ) )
10 f1oeq3 ( ran 𝑆 = ran ( 𝑆 ↾ ( 𝑅m 𝑉 ) ) → ( ( 𝑆 ↾ ( 𝑅m 𝑉 ) ) : ( 𝑅m 𝑉 ) –1-1-onto→ ran 𝑆 ↔ ( 𝑆 ↾ ( 𝑅m 𝑉 ) ) : ( 𝑅m 𝑉 ) –1-1-onto→ ran ( 𝑆 ↾ ( 𝑅m 𝑉 ) ) ) )
11 9 10 ax-mp ( ( 𝑆 ↾ ( 𝑅m 𝑉 ) ) : ( 𝑅m 𝑉 ) –1-1-onto→ ran 𝑆 ↔ ( 𝑆 ↾ ( 𝑅m 𝑉 ) ) : ( 𝑅m 𝑉 ) –1-1-onto→ ran ( 𝑆 ↾ ( 𝑅m 𝑉 ) ) )
12 6 11 sylibr ( 𝑇𝑊 → ( 𝑆 ↾ ( 𝑅m 𝑉 ) ) : ( 𝑅m 𝑉 ) –1-1-onto→ ran 𝑆 )