Metamath Proof Explorer


Theorem mrsubff1o

Description: When restricted to complete mappings, the substitution-producing function is bijective to the set of all substitutions. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mrsubvr.v
|- V = ( mVR ` T )
mrsubvr.r
|- R = ( mREx ` T )
mrsubvr.s
|- S = ( mRSubst ` T )
Assertion mrsubff1o
|- ( T e. W -> ( S |` ( R ^m V ) ) : ( R ^m V ) -1-1-onto-> ran S )

Proof

Step Hyp Ref Expression
1 mrsubvr.v
 |-  V = ( mVR ` T )
2 mrsubvr.r
 |-  R = ( mREx ` T )
3 mrsubvr.s
 |-  S = ( mRSubst ` T )
4 1 2 3 mrsubff1
 |-  ( T e. W -> ( S |` ( R ^m V ) ) : ( R ^m V ) -1-1-> ( R ^m R ) )
5 f1f1orn
 |-  ( ( S |` ( R ^m V ) ) : ( R ^m V ) -1-1-> ( R ^m R ) -> ( S |` ( R ^m V ) ) : ( R ^m V ) -1-1-onto-> ran ( S |` ( R ^m V ) ) )
6 4 5 syl
 |-  ( T e. W -> ( S |` ( R ^m V ) ) : ( R ^m V ) -1-1-onto-> ran ( S |` ( R ^m V ) ) )
7 1 2 3 mrsubrn
 |-  ran S = ( S " ( R ^m V ) )
8 df-ima
 |-  ( S " ( R ^m V ) ) = ran ( S |` ( R ^m V ) )
9 7 8 eqtri
 |-  ran S = ran ( S |` ( R ^m V ) )
10 f1oeq3
 |-  ( ran S = ran ( S |` ( R ^m V ) ) -> ( ( S |` ( R ^m V ) ) : ( R ^m V ) -1-1-onto-> ran S <-> ( S |` ( R ^m V ) ) : ( R ^m V ) -1-1-onto-> ran ( S |` ( R ^m V ) ) ) )
11 9 10 ax-mp
 |-  ( ( S |` ( R ^m V ) ) : ( R ^m V ) -1-1-onto-> ran S <-> ( S |` ( R ^m V ) ) : ( R ^m V ) -1-1-onto-> ran ( S |` ( R ^m V ) ) )
12 6 11 sylibr
 |-  ( T e. W -> ( S |` ( R ^m V ) ) : ( R ^m V ) -1-1-onto-> ran S )