Step |
Hyp |
Ref |
Expression |
1 |
|
mrsubccat.s |
|- S = ( mRSubst ` T ) |
2 |
|
n0i |
|- ( F e. ran S -> -. ran S = (/) ) |
3 |
1
|
rnfvprc |
|- ( -. T e. _V -> ran S = (/) ) |
4 |
2 3
|
nsyl2 |
|- ( F e. ran S -> T e. _V ) |
5 |
|
eqid |
|- ( mVR ` T ) = ( mVR ` T ) |
6 |
|
eqid |
|- ( mREx ` T ) = ( mREx ` T ) |
7 |
5 6 1
|
mrsubff |
|- ( T e. _V -> S : ( ( mREx ` T ) ^pm ( mVR ` T ) ) --> ( ( mREx ` T ) ^m ( mREx ` T ) ) ) |
8 |
|
ffun |
|- ( S : ( ( mREx ` T ) ^pm ( mVR ` T ) ) --> ( ( mREx ` T ) ^m ( mREx ` T ) ) -> Fun S ) |
9 |
4 7 8
|
3syl |
|- ( F e. ran S -> Fun S ) |
10 |
5 6 1
|
mrsubrn |
|- ran S = ( S " ( ( mREx ` T ) ^m ( mVR ` T ) ) ) |
11 |
10
|
eleq2i |
|- ( F e. ran S <-> F e. ( S " ( ( mREx ` T ) ^m ( mVR ` T ) ) ) ) |
12 |
11
|
biimpi |
|- ( F e. ran S -> F e. ( S " ( ( mREx ` T ) ^m ( mVR ` T ) ) ) ) |
13 |
|
fvelima |
|- ( ( Fun S /\ F e. ( S " ( ( mREx ` T ) ^m ( mVR ` T ) ) ) ) -> E. f e. ( ( mREx ` T ) ^m ( mVR ` T ) ) ( S ` f ) = F ) |
14 |
9 12 13
|
syl2anc |
|- ( F e. ran S -> E. f e. ( ( mREx ` T ) ^m ( mVR ` T ) ) ( S ` f ) = F ) |
15 |
|
elmapi |
|- ( f e. ( ( mREx ` T ) ^m ( mVR ` T ) ) -> f : ( mVR ` T ) --> ( mREx ` T ) ) |
16 |
15
|
adantl |
|- ( ( T e. _V /\ f e. ( ( mREx ` T ) ^m ( mVR ` T ) ) ) -> f : ( mVR ` T ) --> ( mREx ` T ) ) |
17 |
|
ssidd |
|- ( ( T e. _V /\ f e. ( ( mREx ` T ) ^m ( mVR ` T ) ) ) -> ( mVR ` T ) C_ ( mVR ` T ) ) |
18 |
|
wrd0 |
|- (/) e. Word ( ( mCN ` T ) u. ( mVR ` T ) ) |
19 |
|
eqid |
|- ( mCN ` T ) = ( mCN ` T ) |
20 |
19 5 6
|
mrexval |
|- ( T e. _V -> ( mREx ` T ) = Word ( ( mCN ` T ) u. ( mVR ` T ) ) ) |
21 |
20
|
adantr |
|- ( ( T e. _V /\ f e. ( ( mREx ` T ) ^m ( mVR ` T ) ) ) -> ( mREx ` T ) = Word ( ( mCN ` T ) u. ( mVR ` T ) ) ) |
22 |
18 21
|
eleqtrrid |
|- ( ( T e. _V /\ f e. ( ( mREx ` T ) ^m ( mVR ` T ) ) ) -> (/) e. ( mREx ` T ) ) |
23 |
|
eqid |
|- ( freeMnd ` ( ( mCN ` T ) u. ( mVR ` T ) ) ) = ( freeMnd ` ( ( mCN ` T ) u. ( mVR ` T ) ) ) |
24 |
19 5 6 1 23
|
mrsubval |
|- ( ( f : ( mVR ` T ) --> ( mREx ` T ) /\ ( mVR ` T ) C_ ( mVR ` T ) /\ (/) e. ( mREx ` T ) ) -> ( ( S ` f ) ` (/) ) = ( ( freeMnd ` ( ( mCN ` T ) u. ( mVR ` T ) ) ) gsum ( ( v e. ( ( mCN ` T ) u. ( mVR ` T ) ) |-> if ( v e. ( mVR ` T ) , ( f ` v ) , <" v "> ) ) o. (/) ) ) ) |
25 |
16 17 22 24
|
syl3anc |
|- ( ( T e. _V /\ f e. ( ( mREx ` T ) ^m ( mVR ` T ) ) ) -> ( ( S ` f ) ` (/) ) = ( ( freeMnd ` ( ( mCN ` T ) u. ( mVR ` T ) ) ) gsum ( ( v e. ( ( mCN ` T ) u. ( mVR ` T ) ) |-> if ( v e. ( mVR ` T ) , ( f ` v ) , <" v "> ) ) o. (/) ) ) ) |
26 |
|
co02 |
|- ( ( v e. ( ( mCN ` T ) u. ( mVR ` T ) ) |-> if ( v e. ( mVR ` T ) , ( f ` v ) , <" v "> ) ) o. (/) ) = (/) |
27 |
26
|
oveq2i |
|- ( ( freeMnd ` ( ( mCN ` T ) u. ( mVR ` T ) ) ) gsum ( ( v e. ( ( mCN ` T ) u. ( mVR ` T ) ) |-> if ( v e. ( mVR ` T ) , ( f ` v ) , <" v "> ) ) o. (/) ) ) = ( ( freeMnd ` ( ( mCN ` T ) u. ( mVR ` T ) ) ) gsum (/) ) |
28 |
23
|
frmd0 |
|- (/) = ( 0g ` ( freeMnd ` ( ( mCN ` T ) u. ( mVR ` T ) ) ) ) |
29 |
28
|
gsum0 |
|- ( ( freeMnd ` ( ( mCN ` T ) u. ( mVR ` T ) ) ) gsum (/) ) = (/) |
30 |
27 29
|
eqtri |
|- ( ( freeMnd ` ( ( mCN ` T ) u. ( mVR ` T ) ) ) gsum ( ( v e. ( ( mCN ` T ) u. ( mVR ` T ) ) |-> if ( v e. ( mVR ` T ) , ( f ` v ) , <" v "> ) ) o. (/) ) ) = (/) |
31 |
25 30
|
eqtrdi |
|- ( ( T e. _V /\ f e. ( ( mREx ` T ) ^m ( mVR ` T ) ) ) -> ( ( S ` f ) ` (/) ) = (/) ) |
32 |
|
fveq1 |
|- ( ( S ` f ) = F -> ( ( S ` f ) ` (/) ) = ( F ` (/) ) ) |
33 |
32
|
eqeq1d |
|- ( ( S ` f ) = F -> ( ( ( S ` f ) ` (/) ) = (/) <-> ( F ` (/) ) = (/) ) ) |
34 |
31 33
|
syl5ibcom |
|- ( ( T e. _V /\ f e. ( ( mREx ` T ) ^m ( mVR ` T ) ) ) -> ( ( S ` f ) = F -> ( F ` (/) ) = (/) ) ) |
35 |
34
|
rexlimdva |
|- ( T e. _V -> ( E. f e. ( ( mREx ` T ) ^m ( mVR ` T ) ) ( S ` f ) = F -> ( F ` (/) ) = (/) ) ) |
36 |
4 14 35
|
sylc |
|- ( F e. ran S -> ( F ` (/) ) = (/) ) |