Step |
Hyp |
Ref |
Expression |
1 |
|
mrsubccat.s |
|- S = ( mRSubst ` T ) |
2 |
|
mrsubccat.r |
|- R = ( mREx ` T ) |
3 |
|
n0i |
|- ( F e. ran S -> -. ran S = (/) ) |
4 |
1
|
rnfvprc |
|- ( -. T e. _V -> ran S = (/) ) |
5 |
3 4
|
nsyl2 |
|- ( F e. ran S -> T e. _V ) |
6 |
|
eqid |
|- ( mVR ` T ) = ( mVR ` T ) |
7 |
6 2 1
|
mrsubff |
|- ( T e. _V -> S : ( R ^pm ( mVR ` T ) ) --> ( R ^m R ) ) |
8 |
|
frn |
|- ( S : ( R ^pm ( mVR ` T ) ) --> ( R ^m R ) -> ran S C_ ( R ^m R ) ) |
9 |
5 7 8
|
3syl |
|- ( F e. ran S -> ran S C_ ( R ^m R ) ) |
10 |
|
id |
|- ( F e. ran S -> F e. ran S ) |
11 |
9 10
|
sseldd |
|- ( F e. ran S -> F e. ( R ^m R ) ) |
12 |
|
elmapi |
|- ( F e. ( R ^m R ) -> F : R --> R ) |
13 |
11 12
|
syl |
|- ( F e. ran S -> F : R --> R ) |