Metamath Proof Explorer


Theorem mrsubf

Description: A substitution is a function. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mrsubccat.s
|- S = ( mRSubst ` T )
mrsubccat.r
|- R = ( mREx ` T )
Assertion mrsubf
|- ( F e. ran S -> F : R --> R )

Proof

Step Hyp Ref Expression
1 mrsubccat.s
 |-  S = ( mRSubst ` T )
2 mrsubccat.r
 |-  R = ( mREx ` T )
3 n0i
 |-  ( F e. ran S -> -. ran S = (/) )
4 1 rnfvprc
 |-  ( -. T e. _V -> ran S = (/) )
5 3 4 nsyl2
 |-  ( F e. ran S -> T e. _V )
6 eqid
 |-  ( mVR ` T ) = ( mVR ` T )
7 6 2 1 mrsubff
 |-  ( T e. _V -> S : ( R ^pm ( mVR ` T ) ) --> ( R ^m R ) )
8 frn
 |-  ( S : ( R ^pm ( mVR ` T ) ) --> ( R ^m R ) -> ran S C_ ( R ^m R ) )
9 5 7 8 3syl
 |-  ( F e. ran S -> ran S C_ ( R ^m R ) )
10 id
 |-  ( F e. ran S -> F e. ran S )
11 9 10 sseldd
 |-  ( F e. ran S -> F e. ( R ^m R ) )
12 elmapi
 |-  ( F e. ( R ^m R ) -> F : R --> R )
13 11 12 syl
 |-  ( F e. ran S -> F : R --> R )