Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Mario Carneiro
Metamath formal systems
mrsubf
Next ⟩
mrsubccat
Metamath Proof Explorer
Ascii
Unicode
Theorem
mrsubf
Description:
A substitution is a function.
(Contributed by
Mario Carneiro
, 18-Jul-2016)
Ref
Expression
Hypotheses
mrsubccat.s
⊢
S
=
mRSubst
⁡
T
mrsubccat.r
⊢
R
=
mREx
⁡
T
Assertion
mrsubf
⊢
F
∈
ran
⁡
S
→
F
:
R
⟶
R
Proof
Step
Hyp
Ref
Expression
1
mrsubccat.s
⊢
S
=
mRSubst
⁡
T
2
mrsubccat.r
⊢
R
=
mREx
⁡
T
3
n0i
⊢
F
∈
ran
⁡
S
→
¬
ran
⁡
S
=
∅
4
1
rnfvprc
⊢
¬
T
∈
V
→
ran
⁡
S
=
∅
5
3
4
nsyl2
⊢
F
∈
ran
⁡
S
→
T
∈
V
6
eqid
⊢
mVR
⁡
T
=
mVR
⁡
T
7
6
2
1
mrsubff
⊢
T
∈
V
→
S
:
R
↑
𝑝𝑚
mVR
⁡
T
⟶
R
R
8
frn
⊢
S
:
R
↑
𝑝𝑚
mVR
⁡
T
⟶
R
R
→
ran
⁡
S
⊆
R
R
9
5
7
8
3syl
⊢
F
∈
ran
⁡
S
→
ran
⁡
S
⊆
R
R
10
id
⊢
F
∈
ran
⁡
S
→
F
∈
ran
⁡
S
11
9
10
sseldd
⊢
F
∈
ran
⁡
S
→
F
∈
R
R
12
elmapi
⊢
F
∈
R
R
→
F
:
R
⟶
R
13
11
12
syl
⊢
F
∈
ran
⁡
S
→
F
:
R
⟶
R