Step |
Hyp |
Ref |
Expression |
1 |
|
mrsubccat.s |
|
2 |
|
mrsubccat.r |
|
3 |
|
n0i |
|
4 |
1
|
rnfvprc |
|
5 |
3 4
|
nsyl2 |
|
6 |
|
eqid |
|
7 |
6 2 1
|
mrsubff |
|
8 |
|
ffun |
|
9 |
5 7 8
|
3syl |
|
10 |
6 2 1
|
mrsubrn |
|
11 |
10
|
eleq2i |
|
12 |
11
|
biimpi |
|
13 |
|
fvelima |
|
14 |
9 12 13
|
syl2anc |
|
15 |
|
simprl |
|
16 |
|
elfvex |
|
17 |
16 2
|
eleq2s |
|
18 |
|
eqid |
|
19 |
18 6 2
|
mrexval |
|
20 |
15 17 19
|
3syl |
|
21 |
15 20
|
eleqtrd |
|
22 |
|
simprr |
|
23 |
22 20
|
eleqtrd |
|
24 |
|
elmapi |
|
25 |
24
|
adantr |
|
26 |
25
|
adantr |
|
27 |
26
|
ffvelrnda |
|
28 |
20
|
ad2antrr |
|
29 |
27 28
|
eleqtrd |
|
30 |
|
simplr |
|
31 |
30
|
s1cld |
|
32 |
29 31
|
ifclda |
|
33 |
32
|
fmpttd |
|
34 |
|
ccatco |
|
35 |
21 23 33 34
|
syl3anc |
|
36 |
35
|
oveq2d |
|
37 |
|
fvex |
|
38 |
|
fvex |
|
39 |
37 38
|
unex |
|
40 |
|
eqid |
|
41 |
40
|
frmdmnd |
|
42 |
39 41
|
mp1i |
|
43 |
|
wrdco |
|
44 |
21 33 43
|
syl2anc |
|
45 |
|
wrdco |
|
46 |
23 33 45
|
syl2anc |
|
47 |
|
eqid |
|
48 |
40 47
|
frmdbas |
|
49 |
39 48
|
ax-mp |
|
50 |
49
|
eqcomi |
|
51 |
|
eqid |
|
52 |
50 51
|
gsumccat |
|
53 |
42 44 46 52
|
syl3anc |
|
54 |
50
|
gsumwcl |
|
55 |
42 44 54
|
syl2anc |
|
56 |
50
|
gsumwcl |
|
57 |
42 46 56
|
syl2anc |
|
58 |
40 50 51
|
frmdadd |
|
59 |
55 57 58
|
syl2anc |
|
60 |
36 53 59
|
3eqtrd |
|
61 |
|
ssidd |
|
62 |
|
ccatcl |
|
63 |
21 23 62
|
syl2anc |
|
64 |
63 20
|
eleqtrrd |
|
65 |
18 6 2 1 40
|
mrsubval |
|
66 |
25 61 64 65
|
syl3anc |
|
67 |
18 6 2 1 40
|
mrsubval |
|
68 |
25 61 15 67
|
syl3anc |
|
69 |
18 6 2 1 40
|
mrsubval |
|
70 |
25 61 22 69
|
syl3anc |
|
71 |
68 70
|
oveq12d |
|
72 |
60 66 71
|
3eqtr4d |
|
73 |
|
fveq1 |
|
74 |
|
fveq1 |
|
75 |
|
fveq1 |
|
76 |
74 75
|
oveq12d |
|
77 |
73 76
|
eqeq12d |
|
78 |
72 77
|
syl5ibcom |
|
79 |
78
|
ex |
|
80 |
79
|
com23 |
|
81 |
80
|
rexlimiv |
|
82 |
14 81
|
syl |
|
83 |
82
|
3impib |
|