Description: Although it is defined for partial mappings of variables, every partial substitution is a substitution on some complete mapping of the variables. (Contributed by Mario Carneiro, 18-Jul-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mrsubvr.v | |
|
mrsubvr.r | |
||
mrsubvr.s | |
||
Assertion | mrsubrn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrsubvr.v | |
|
2 | mrsubvr.r | |
|
3 | mrsubvr.s | |
|
4 | 1 2 3 | mrsubff | |
5 | 4 | ffnd | |
6 | eleq1w | |
|
7 | fveq2 | |
|
8 | s1eq | |
|
9 | 6 7 8 | ifbieq12d | |
10 | eqid | |
|
11 | fvex | |
|
12 | s1cli | |
|
13 | 12 | elexi | |
14 | 11 13 | ifex | |
15 | 9 10 14 | fvmpt | |
16 | 15 | adantl | |
17 | 16 | ifeq1da | |
18 | ifan | |
|
19 | 17 18 | eqtr4di | |
20 | elpmi | |
|
21 | 20 | adantl | |
22 | 21 | simprd | |
23 | 22 | sseld | |
24 | 23 | pm4.71rd | |
25 | 24 | bicomd | |
26 | 25 | ifbid | |
27 | 19 26 | eqtr2d | |
28 | 27 | mpteq2dv | |
29 | 28 | coeq1d | |
30 | 29 | oveq2d | |
31 | 30 | mpteq2dv | |
32 | eqid | |
|
33 | eqid | |
|
34 | 32 1 2 3 33 | mrsubfval | |
35 | 21 34 | syl | |
36 | 21 | simpld | |
37 | 36 | adantr | |
38 | 37 | ffvelcdmda | |
39 | elun2 | |
|
40 | 39 | ad2antlr | |
41 | 40 | s1cld | |
42 | 32 1 2 | mrexval | |
43 | 42 | ad3antrrr | |
44 | 41 43 | eleqtrrd | |
45 | 38 44 | ifclda | |
46 | 45 | fmpttd | |
47 | ssid | |
|
48 | 32 1 2 3 33 | mrsubfval | |
49 | 46 47 48 | sylancl | |
50 | 31 35 49 | 3eqtr4d | |
51 | 5 | adantr | |
52 | mapsspm | |
|
53 | 52 | a1i | |
54 | 2 | fvexi | |
55 | 1 | fvexi | |
56 | 54 55 | elmap | |
57 | 46 56 | sylibr | |
58 | fnfvima | |
|
59 | 51 53 57 58 | syl3anc | |
60 | 50 59 | eqeltrd | |
61 | 60 | ralrimiva | |
62 | ffnfv | |
|
63 | 5 61 62 | sylanbrc | |
64 | 63 | frnd | |
65 | 3 | rnfvprc | |
66 | 0ss | |
|
67 | 65 66 | eqsstrdi | |
68 | 64 67 | pm2.61i | |
69 | imassrn | |
|
70 | 68 69 | eqssi | |