Step |
Hyp |
Ref |
Expression |
1 |
|
mrsubvr.v |
|
2 |
|
mrsubvr.r |
|
3 |
|
mrsubvr.s |
|
4 |
1 2 3
|
mrsubff |
|
5 |
4
|
ffnd |
|
6 |
|
eleq1w |
|
7 |
|
fveq2 |
|
8 |
|
s1eq |
|
9 |
6 7 8
|
ifbieq12d |
|
10 |
|
eqid |
|
11 |
|
fvex |
|
12 |
|
s1cli |
|
13 |
12
|
elexi |
|
14 |
11 13
|
ifex |
|
15 |
9 10 14
|
fvmpt |
|
16 |
15
|
adantl |
|
17 |
16
|
ifeq1da |
|
18 |
|
ifan |
|
19 |
17 18
|
eqtr4di |
|
20 |
|
elpmi |
|
21 |
20
|
adantl |
|
22 |
21
|
simprd |
|
23 |
22
|
sseld |
|
24 |
23
|
pm4.71rd |
|
25 |
24
|
bicomd |
|
26 |
25
|
ifbid |
|
27 |
19 26
|
eqtr2d |
|
28 |
27
|
mpteq2dv |
|
29 |
28
|
coeq1d |
|
30 |
29
|
oveq2d |
|
31 |
30
|
mpteq2dv |
|
32 |
|
eqid |
|
33 |
|
eqid |
|
34 |
32 1 2 3 33
|
mrsubfval |
|
35 |
21 34
|
syl |
|
36 |
21
|
simpld |
|
37 |
36
|
adantr |
|
38 |
37
|
ffvelrnda |
|
39 |
|
elun2 |
|
40 |
39
|
ad2antlr |
|
41 |
40
|
s1cld |
|
42 |
32 1 2
|
mrexval |
|
43 |
42
|
ad3antrrr |
|
44 |
41 43
|
eleqtrrd |
|
45 |
38 44
|
ifclda |
|
46 |
45
|
fmpttd |
|
47 |
|
ssid |
|
48 |
32 1 2 3 33
|
mrsubfval |
|
49 |
46 47 48
|
sylancl |
|
50 |
31 35 49
|
3eqtr4d |
|
51 |
5
|
adantr |
|
52 |
|
mapsspm |
|
53 |
52
|
a1i |
|
54 |
2
|
fvexi |
|
55 |
1
|
fvexi |
|
56 |
54 55
|
elmap |
|
57 |
46 56
|
sylibr |
|
58 |
|
fnfvima |
|
59 |
51 53 57 58
|
syl3anc |
|
60 |
50 59
|
eqeltrd |
|
61 |
60
|
ralrimiva |
|
62 |
|
ffnfv |
|
63 |
5 61 62
|
sylanbrc |
|
64 |
63
|
frnd |
|
65 |
3
|
rnfvprc |
|
66 |
|
0ss |
|
67 |
65 66
|
eqsstrdi |
|
68 |
64 67
|
pm2.61i |
|
69 |
|
imassrn |
|
70 |
68 69
|
eqssi |
|