Metamath Proof Explorer


Theorem mrsubrn

Description: Although it is defined for partial mappings of variables, every partial substitution is a substitution on some complete mapping of the variables. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mrsubvr.v V=mVRT
mrsubvr.r R=mRExT
mrsubvr.s S=mRSubstT
Assertion mrsubrn ranS=SRV

Proof

Step Hyp Ref Expression
1 mrsubvr.v V=mVRT
2 mrsubvr.r R=mRExT
3 mrsubvr.s S=mRSubstT
4 1 2 3 mrsubff TVS:R𝑝𝑚VRR
5 4 ffnd TVSFnR𝑝𝑚V
6 eleq1w x=vxdomfvdomf
7 fveq2 x=vfx=fv
8 s1eq x=v⟨“x”⟩=⟨“v”⟩
9 6 7 8 ifbieq12d x=vifxdomffx⟨“x”⟩=ifvdomffv⟨“v”⟩
10 eqid xVifxdomffx⟨“x”⟩=xVifxdomffx⟨“x”⟩
11 fvex fvV
12 s1cli ⟨“v”⟩WordV
13 12 elexi ⟨“v”⟩V
14 11 13 ifex ifvdomffv⟨“v”⟩V
15 9 10 14 fvmpt vVxVifxdomffx⟨“x”⟩v=ifvdomffv⟨“v”⟩
16 15 adantl TVfR𝑝𝑚VvVxVifxdomffx⟨“x”⟩v=ifvdomffv⟨“v”⟩
17 16 ifeq1da TVfR𝑝𝑚VifvVxVifxdomffx⟨“x”⟩v⟨“v”⟩=ifvVifvdomffv⟨“v”⟩⟨“v”⟩
18 ifan ifvVvdomffv⟨“v”⟩=ifvVifvdomffv⟨“v”⟩⟨“v”⟩
19 17 18 eqtr4di TVfR𝑝𝑚VifvVxVifxdomffx⟨“x”⟩v⟨“v”⟩=ifvVvdomffv⟨“v”⟩
20 elpmi fR𝑝𝑚Vf:domfRdomfV
21 20 adantl TVfR𝑝𝑚Vf:domfRdomfV
22 21 simprd TVfR𝑝𝑚VdomfV
23 22 sseld TVfR𝑝𝑚VvdomfvV
24 23 pm4.71rd TVfR𝑝𝑚VvdomfvVvdomf
25 24 bicomd TVfR𝑝𝑚VvVvdomfvdomf
26 25 ifbid TVfR𝑝𝑚VifvVvdomffv⟨“v”⟩=ifvdomffv⟨“v”⟩
27 19 26 eqtr2d TVfR𝑝𝑚Vifvdomffv⟨“v”⟩=ifvVxVifxdomffx⟨“x”⟩v⟨“v”⟩
28 27 mpteq2dv TVfR𝑝𝑚VvmCNTVifvdomffv⟨“v”⟩=vmCNTVifvVxVifxdomffx⟨“x”⟩v⟨“v”⟩
29 28 coeq1d TVfR𝑝𝑚VvmCNTVifvdomffv⟨“v”⟩e=vmCNTVifvVxVifxdomffx⟨“x”⟩v⟨“v”⟩e
30 29 oveq2d TVfR𝑝𝑚VfreeMndmCNTVvmCNTVifvdomffv⟨“v”⟩e=freeMndmCNTVvmCNTVifvVxVifxdomffx⟨“x”⟩v⟨“v”⟩e
31 30 mpteq2dv TVfR𝑝𝑚VeRfreeMndmCNTVvmCNTVifvdomffv⟨“v”⟩e=eRfreeMndmCNTVvmCNTVifvVxVifxdomffx⟨“x”⟩v⟨“v”⟩e
32 eqid mCNT=mCNT
33 eqid freeMndmCNTV=freeMndmCNTV
34 32 1 2 3 33 mrsubfval f:domfRdomfVSf=eRfreeMndmCNTVvmCNTVifvdomffv⟨“v”⟩e
35 21 34 syl TVfR𝑝𝑚VSf=eRfreeMndmCNTVvmCNTVifvdomffv⟨“v”⟩e
36 21 simpld TVfR𝑝𝑚Vf:domfR
37 36 adantr TVfR𝑝𝑚VxVf:domfR
38 37 ffvelcdmda TVfR𝑝𝑚VxVxdomffxR
39 elun2 xVxmCNTV
40 39 ad2antlr TVfR𝑝𝑚VxV¬xdomfxmCNTV
41 40 s1cld TVfR𝑝𝑚VxV¬xdomf⟨“x”⟩WordmCNTV
42 32 1 2 mrexval TVR=WordmCNTV
43 42 ad3antrrr TVfR𝑝𝑚VxV¬xdomfR=WordmCNTV
44 41 43 eleqtrrd TVfR𝑝𝑚VxV¬xdomf⟨“x”⟩R
45 38 44 ifclda TVfR𝑝𝑚VxVifxdomffx⟨“x”⟩R
46 45 fmpttd TVfR𝑝𝑚VxVifxdomffx⟨“x”⟩:VR
47 ssid VV
48 32 1 2 3 33 mrsubfval xVifxdomffx⟨“x”⟩:VRVVSxVifxdomffx⟨“x”⟩=eRfreeMndmCNTVvmCNTVifvVxVifxdomffx⟨“x”⟩v⟨“v”⟩e
49 46 47 48 sylancl TVfR𝑝𝑚VSxVifxdomffx⟨“x”⟩=eRfreeMndmCNTVvmCNTVifvVxVifxdomffx⟨“x”⟩v⟨“v”⟩e
50 31 35 49 3eqtr4d TVfR𝑝𝑚VSf=SxVifxdomffx⟨“x”⟩
51 5 adantr TVfR𝑝𝑚VSFnR𝑝𝑚V
52 mapsspm RVR𝑝𝑚V
53 52 a1i TVfR𝑝𝑚VRVR𝑝𝑚V
54 2 fvexi RV
55 1 fvexi VV
56 54 55 elmap xVifxdomffx⟨“x”⟩RVxVifxdomffx⟨“x”⟩:VR
57 46 56 sylibr TVfR𝑝𝑚VxVifxdomffx⟨“x”⟩RV
58 fnfvima SFnR𝑝𝑚VRVR𝑝𝑚VxVifxdomffx⟨“x”⟩RVSxVifxdomffx⟨“x”⟩SRV
59 51 53 57 58 syl3anc TVfR𝑝𝑚VSxVifxdomffx⟨“x”⟩SRV
60 50 59 eqeltrd TVfR𝑝𝑚VSfSRV
61 60 ralrimiva TVfR𝑝𝑚VSfSRV
62 ffnfv S:R𝑝𝑚VSRVSFnR𝑝𝑚VfR𝑝𝑚VSfSRV
63 5 61 62 sylanbrc TVS:R𝑝𝑚VSRV
64 63 frnd TVranSSRV
65 3 rnfvprc ¬TVranS=
66 0ss SRV
67 65 66 eqsstrdi ¬TVranSSRV
68 64 67 pm2.61i ranSSRV
69 imassrn SRVranS
70 68 69 eqssi ranS=SRV