Metamath Proof Explorer


Theorem mrsubff1

Description: When restricted to complete mappings, the substitution-producing function is one-to-one. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mrsubvr.v V = mVR T
mrsubvr.r R = mREx T
mrsubvr.s S = mRSubst T
Assertion mrsubff1 T W S R V : R V 1-1 R R

Proof

Step Hyp Ref Expression
1 mrsubvr.v V = mVR T
2 mrsubvr.r R = mREx T
3 mrsubvr.s S = mRSubst T
4 1 2 3 mrsubff T W S : R 𝑝𝑚 V R R
5 mapsspm R V R 𝑝𝑚 V
6 5 a1i T W R V R 𝑝𝑚 V
7 4 6 fssresd T W S R V : R V R R
8 fveq1 S f = S g S f ⟨“ v ”⟩ = S g ⟨“ v ”⟩
9 simplrl T W f R V g R V v V f R V
10 elmapi f R V f : V R
11 9 10 syl T W f R V g R V v V f : V R
12 ssidd T W f R V g R V v V V V
13 simpr T W f R V g R V v V v V
14 1 2 3 mrsubvr f : V R V V v V S f ⟨“ v ”⟩ = f v
15 11 12 13 14 syl3anc T W f R V g R V v V S f ⟨“ v ”⟩ = f v
16 simplrr T W f R V g R V v V g R V
17 elmapi g R V g : V R
18 16 17 syl T W f R V g R V v V g : V R
19 1 2 3 mrsubvr g : V R V V v V S g ⟨“ v ”⟩ = g v
20 18 12 13 19 syl3anc T W f R V g R V v V S g ⟨“ v ”⟩ = g v
21 15 20 eqeq12d T W f R V g R V v V S f ⟨“ v ”⟩ = S g ⟨“ v ”⟩ f v = g v
22 8 21 syl5ib T W f R V g R V v V S f = S g f v = g v
23 22 ralrimdva T W f R V g R V S f = S g v V f v = g v
24 fvres f R V S R V f = S f
25 fvres g R V S R V g = S g
26 24 25 eqeqan12d f R V g R V S R V f = S R V g S f = S g
27 26 adantl T W f R V g R V S R V f = S R V g S f = S g
28 ffn f : V R f Fn V
29 ffn g : V R g Fn V
30 eqfnfv f Fn V g Fn V f = g v V f v = g v
31 28 29 30 syl2an f : V R g : V R f = g v V f v = g v
32 10 17 31 syl2an f R V g R V f = g v V f v = g v
33 32 adantl T W f R V g R V f = g v V f v = g v
34 23 27 33 3imtr4d T W f R V g R V S R V f = S R V g f = g
35 34 ralrimivva T W f R V g R V S R V f = S R V g f = g
36 dff13 S R V : R V 1-1 R R S R V : R V R R f R V g R V S R V f = S R V g f = g
37 7 35 36 sylanbrc T W S R V : R V 1-1 R R