Metamath Proof Explorer


Theorem mrsubvr

Description: The value of a substituted variable. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mrsubvr.v V=mVRT
mrsubvr.r R=mRExT
mrsubvr.s S=mRSubstT
Assertion mrsubvr F:ARAVXASF⟨“X”⟩=FX

Proof

Step Hyp Ref Expression
1 mrsubvr.v V=mVRT
2 mrsubvr.r R=mRExT
3 mrsubvr.s S=mRSubstT
4 ssun2 VmCNTV
5 simp2 F:ARAVXAAV
6 simp3 F:ARAVXAXA
7 5 6 sseldd F:ARAVXAXV
8 4 7 sselid F:ARAVXAXmCNTV
9 eqid mCNT=mCNT
10 9 1 2 3 mrsubcv F:ARAVXmCNTVSF⟨“X”⟩=ifXAFX⟨“X”⟩
11 8 10 syld3an3 F:ARAVXASF⟨“X”⟩=ifXAFX⟨“X”⟩
12 iftrue XAifXAFX⟨“X”⟩=FX
13 12 3ad2ant3 F:ARAVXAifXAFX⟨“X”⟩=FX
14 11 13 eqtrd F:ARAVXASF⟨“X”⟩=FX