| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mrsubffval.c |
|
| 2 |
|
mrsubffval.v |
|
| 3 |
|
mrsubffval.r |
|
| 4 |
|
mrsubffval.s |
|
| 5 |
|
simp3 |
|
| 6 |
5
|
s1cld |
|
| 7 |
|
elun |
|
| 8 |
|
elfvex |
|
| 9 |
8 1
|
eleq2s |
|
| 10 |
|
elfvex |
|
| 11 |
10 2
|
eleq2s |
|
| 12 |
9 11
|
jaoi |
|
| 13 |
7 12
|
sylbi |
|
| 14 |
13
|
3ad2ant3 |
|
| 15 |
1 2 3
|
mrexval |
|
| 16 |
14 15
|
syl |
|
| 17 |
6 16
|
eleqtrrd |
|
| 18 |
|
eqid |
|
| 19 |
1 2 3 4 18
|
mrsubval |
|
| 20 |
17 19
|
syld3an3 |
|
| 21 |
|
simpl1 |
|
| 22 |
21
|
ffvelcdmda |
|
| 23 |
16
|
ad2antrr |
|
| 24 |
22 23
|
eleqtrd |
|
| 25 |
|
simplr |
|
| 26 |
25
|
s1cld |
|
| 27 |
24 26
|
ifclda |
|
| 28 |
27
|
fmpttd |
|
| 29 |
|
s1co |
|
| 30 |
5 28 29
|
syl2anc |
|
| 31 |
|
eleq1 |
|
| 32 |
|
fveq2 |
|
| 33 |
|
s1eq |
|
| 34 |
31 32 33
|
ifbieq12d |
|
| 35 |
|
eqid |
|
| 36 |
|
fvex |
|
| 37 |
|
s1cli |
|
| 38 |
37
|
elexi |
|
| 39 |
36 38
|
ifex |
|
| 40 |
34 35 39
|
fvmpt |
|
| 41 |
40
|
3ad2ant3 |
|
| 42 |
41
|
s1eqd |
|
| 43 |
30 42
|
eqtrd |
|
| 44 |
43
|
oveq2d |
|
| 45 |
28 5
|
ffvelcdmd |
|
| 46 |
41 45
|
eqeltrrd |
|
| 47 |
1
|
fvexi |
|
| 48 |
2
|
fvexi |
|
| 49 |
47 48
|
unex |
|
| 50 |
|
eqid |
|
| 51 |
18 50
|
frmdbas |
|
| 52 |
49 51
|
ax-mp |
|
| 53 |
52
|
eqcomi |
|
| 54 |
53
|
gsumws1 |
|
| 55 |
46 54
|
syl |
|
| 56 |
20 44 55
|
3eqtrd |
|