Metamath Proof Explorer


Theorem mrsubval

Description: The substitution of some variables for expressions in a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mrsubffval.c C=mCNT
mrsubffval.v V=mVRT
mrsubffval.r R=mRExT
mrsubffval.s S=mRSubstT
mrsubffval.g G=freeMndCV
Assertion mrsubval F:ARAVXRSFX=GvCVifvAFv⟨“v”⟩X

Proof

Step Hyp Ref Expression
1 mrsubffval.c C=mCNT
2 mrsubffval.v V=mVRT
3 mrsubffval.r R=mRExT
4 mrsubffval.s S=mRSubstT
5 mrsubffval.g G=freeMndCV
6 1 2 3 4 5 mrsubfval F:ARAVSF=eRGvCVifvAFv⟨“v”⟩e
7 6 3adant3 F:ARAVXRSF=eRGvCVifvAFv⟨“v”⟩e
8 simpr F:ARAVXRe=Xe=X
9 8 coeq2d F:ARAVXRe=XvCVifvAFv⟨“v”⟩e=vCVifvAFv⟨“v”⟩X
10 9 oveq2d F:ARAVXRe=XGvCVifvAFv⟨“v”⟩e=GvCVifvAFv⟨“v”⟩X
11 simp3 F:ARAVXRXR
12 ovexd F:ARAVXRGvCVifvAFv⟨“v”⟩XV
13 7 10 11 12 fvmptd F:ARAVXRSFX=GvCVifvAFv⟨“v”⟩X