| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mrsubffval.c |
|
| 2 |
|
mrsubffval.v |
|
| 3 |
|
mrsubffval.r |
|
| 4 |
|
mrsubffval.s |
|
| 5 |
|
mrsubffval.g |
|
| 6 |
1 2 3 4 5
|
mrsubffval |
|
| 7 |
6
|
adantr |
|
| 8 |
|
dmeq |
|
| 9 |
|
fdm |
|
| 10 |
9
|
ad2antrl |
|
| 11 |
8 10
|
sylan9eqr |
|
| 12 |
11
|
eleq2d |
|
| 13 |
|
simpr |
|
| 14 |
13
|
fveq1d |
|
| 15 |
12 14
|
ifbieq1d |
|
| 16 |
15
|
mpteq2dv |
|
| 17 |
16
|
coeq1d |
|
| 18 |
17
|
oveq2d |
|
| 19 |
18
|
mpteq2dv |
|
| 20 |
3
|
fvexi |
|
| 21 |
20
|
a1i |
|
| 22 |
2
|
fvexi |
|
| 23 |
22
|
a1i |
|
| 24 |
|
simprl |
|
| 25 |
|
simprr |
|
| 26 |
|
elpm2r |
|
| 27 |
21 23 24 25 26
|
syl22anc |
|
| 28 |
20
|
mptex |
|
| 29 |
28
|
a1i |
|
| 30 |
7 19 27 29
|
fvmptd |
|
| 31 |
30
|
ex |
|
| 32 |
|
0fv |
|
| 33 |
|
fvprc |
|
| 34 |
4 33
|
eqtrid |
|
| 35 |
34
|
fveq1d |
|
| 36 |
|
fvprc |
|
| 37 |
3 36
|
eqtrid |
|
| 38 |
37
|
mpteq1d |
|
| 39 |
|
mpt0 |
|
| 40 |
38 39
|
eqtrdi |
|
| 41 |
32 35 40
|
3eqtr4a |
|
| 42 |
41
|
a1d |
|
| 43 |
31 42
|
pm2.61i |
|