Metamath Proof Explorer


Theorem mrsubfval

Description: The substitution of some variables for expressions in a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mrsubffval.c C=mCNT
mrsubffval.v V=mVRT
mrsubffval.r R=mRExT
mrsubffval.s S=mRSubstT
mrsubffval.g G=freeMndCV
Assertion mrsubfval F:ARAVSF=eRGvCVifvAFv⟨“v”⟩e

Proof

Step Hyp Ref Expression
1 mrsubffval.c C=mCNT
2 mrsubffval.v V=mVRT
3 mrsubffval.r R=mRExT
4 mrsubffval.s S=mRSubstT
5 mrsubffval.g G=freeMndCV
6 1 2 3 4 5 mrsubffval TVS=fR𝑝𝑚VeRGvCVifvdomffv⟨“v”⟩e
7 6 adantr TVF:ARAVS=fR𝑝𝑚VeRGvCVifvdomffv⟨“v”⟩e
8 dmeq f=Fdomf=domF
9 fdm F:ARdomF=A
10 9 ad2antrl TVF:ARAVdomF=A
11 8 10 sylan9eqr TVF:ARAVf=Fdomf=A
12 11 eleq2d TVF:ARAVf=FvdomfvA
13 simpr TVF:ARAVf=Ff=F
14 13 fveq1d TVF:ARAVf=Ffv=Fv
15 12 14 ifbieq1d TVF:ARAVf=Fifvdomffv⟨“v”⟩=ifvAFv⟨“v”⟩
16 15 mpteq2dv TVF:ARAVf=FvCVifvdomffv⟨“v”⟩=vCVifvAFv⟨“v”⟩
17 16 coeq1d TVF:ARAVf=FvCVifvdomffv⟨“v”⟩e=vCVifvAFv⟨“v”⟩e
18 17 oveq2d TVF:ARAVf=FGvCVifvdomffv⟨“v”⟩e=GvCVifvAFv⟨“v”⟩e
19 18 mpteq2dv TVF:ARAVf=FeRGvCVifvdomffv⟨“v”⟩e=eRGvCVifvAFv⟨“v”⟩e
20 3 fvexi RV
21 20 a1i TVF:ARAVRV
22 2 fvexi VV
23 22 a1i TVF:ARAVVV
24 simprl TVF:ARAVF:AR
25 simprr TVF:ARAVAV
26 elpm2r RVVVF:ARAVFR𝑝𝑚V
27 21 23 24 25 26 syl22anc TVF:ARAVFR𝑝𝑚V
28 20 mptex eRGvCVifvAFv⟨“v”⟩eV
29 28 a1i TVF:ARAVeRGvCVifvAFv⟨“v”⟩eV
30 7 19 27 29 fvmptd TVF:ARAVSF=eRGvCVifvAFv⟨“v”⟩e
31 30 ex TVF:ARAVSF=eRGvCVifvAFv⟨“v”⟩e
32 0fv F=
33 fvprc ¬TVmRSubstT=
34 4 33 eqtrid ¬TVS=
35 34 fveq1d ¬TVSF=F
36 fvprc ¬TVmRExT=
37 3 36 eqtrid ¬TVR=
38 37 mpteq1d ¬TVeRGvCVifvAFv⟨“v”⟩e=eGvCVifvAFv⟨“v”⟩e
39 mpt0 eGvCVifvAFv⟨“v”⟩e=
40 38 39 eqtrdi ¬TVeRGvCVifvAFv⟨“v”⟩e=
41 32 35 40 3eqtr4a ¬TVSF=eRGvCVifvAFv⟨“v”⟩e
42 41 a1d ¬TVF:ARAVSF=eRGvCVifvAFv⟨“v”⟩e
43 31 42 pm2.61i F:ARAVSF=eRGvCVifvAFv⟨“v”⟩e