Step |
Hyp |
Ref |
Expression |
1 |
|
mrsubffval.c |
⊢ 𝐶 = ( mCN ‘ 𝑇 ) |
2 |
|
mrsubffval.v |
⊢ 𝑉 = ( mVR ‘ 𝑇 ) |
3 |
|
mrsubffval.r |
⊢ 𝑅 = ( mREx ‘ 𝑇 ) |
4 |
|
mrsubffval.s |
⊢ 𝑆 = ( mRSubst ‘ 𝑇 ) |
5 |
|
mrsubffval.g |
⊢ 𝐺 = ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) |
6 |
1 2 3 4 5
|
mrsubffval |
⊢ ( 𝑇 ∈ V → 𝑆 = ( 𝑓 ∈ ( 𝑅 ↑pm 𝑉 ) ↦ ( 𝑒 ∈ 𝑅 ↦ ( 𝐺 Σg ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ dom 𝑓 , ( 𝑓 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑒 ) ) ) ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝑇 ∈ V ∧ ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ) ) → 𝑆 = ( 𝑓 ∈ ( 𝑅 ↑pm 𝑉 ) ↦ ( 𝑒 ∈ 𝑅 ↦ ( 𝐺 Σg ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ dom 𝑓 , ( 𝑓 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑒 ) ) ) ) ) |
8 |
|
dmeq |
⊢ ( 𝑓 = 𝐹 → dom 𝑓 = dom 𝐹 ) |
9 |
|
fdm |
⊢ ( 𝐹 : 𝐴 ⟶ 𝑅 → dom 𝐹 = 𝐴 ) |
10 |
9
|
ad2antrl |
⊢ ( ( 𝑇 ∈ V ∧ ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ) ) → dom 𝐹 = 𝐴 ) |
11 |
8 10
|
sylan9eqr |
⊢ ( ( ( 𝑇 ∈ V ∧ ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ) ) ∧ 𝑓 = 𝐹 ) → dom 𝑓 = 𝐴 ) |
12 |
11
|
eleq2d |
⊢ ( ( ( 𝑇 ∈ V ∧ ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ) ) ∧ 𝑓 = 𝐹 ) → ( 𝑣 ∈ dom 𝑓 ↔ 𝑣 ∈ 𝐴 ) ) |
13 |
|
simpr |
⊢ ( ( ( 𝑇 ∈ V ∧ ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ) ) ∧ 𝑓 = 𝐹 ) → 𝑓 = 𝐹 ) |
14 |
13
|
fveq1d |
⊢ ( ( ( 𝑇 ∈ V ∧ ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ) ) ∧ 𝑓 = 𝐹 ) → ( 𝑓 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑣 ) ) |
15 |
12 14
|
ifbieq1d |
⊢ ( ( ( 𝑇 ∈ V ∧ ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ) ) ∧ 𝑓 = 𝐹 ) → if ( 𝑣 ∈ dom 𝑓 , ( 𝑓 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) = if ( 𝑣 ∈ 𝐴 , ( 𝐹 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) |
16 |
15
|
mpteq2dv |
⊢ ( ( ( 𝑇 ∈ V ∧ ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ) ) ∧ 𝑓 = 𝐹 ) → ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ dom 𝑓 , ( 𝑓 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) = ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ 𝐴 , ( 𝐹 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ) |
17 |
16
|
coeq1d |
⊢ ( ( ( 𝑇 ∈ V ∧ ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ) ) ∧ 𝑓 = 𝐹 ) → ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ dom 𝑓 , ( 𝑓 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑒 ) = ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ 𝐴 , ( 𝐹 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑒 ) ) |
18 |
17
|
oveq2d |
⊢ ( ( ( 𝑇 ∈ V ∧ ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ) ) ∧ 𝑓 = 𝐹 ) → ( 𝐺 Σg ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ dom 𝑓 , ( 𝑓 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑒 ) ) = ( 𝐺 Σg ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ 𝐴 , ( 𝐹 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑒 ) ) ) |
19 |
18
|
mpteq2dv |
⊢ ( ( ( 𝑇 ∈ V ∧ ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ) ) ∧ 𝑓 = 𝐹 ) → ( 𝑒 ∈ 𝑅 ↦ ( 𝐺 Σg ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ dom 𝑓 , ( 𝑓 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑒 ) ) ) = ( 𝑒 ∈ 𝑅 ↦ ( 𝐺 Σg ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ 𝐴 , ( 𝐹 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑒 ) ) ) ) |
20 |
3
|
fvexi |
⊢ 𝑅 ∈ V |
21 |
20
|
a1i |
⊢ ( ( 𝑇 ∈ V ∧ ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ) ) → 𝑅 ∈ V ) |
22 |
2
|
fvexi |
⊢ 𝑉 ∈ V |
23 |
22
|
a1i |
⊢ ( ( 𝑇 ∈ V ∧ ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ) ) → 𝑉 ∈ V ) |
24 |
|
simprl |
⊢ ( ( 𝑇 ∈ V ∧ ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ) ) → 𝐹 : 𝐴 ⟶ 𝑅 ) |
25 |
|
simprr |
⊢ ( ( 𝑇 ∈ V ∧ ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ) ) → 𝐴 ⊆ 𝑉 ) |
26 |
|
elpm2r |
⊢ ( ( ( 𝑅 ∈ V ∧ 𝑉 ∈ V ) ∧ ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ) ) → 𝐹 ∈ ( 𝑅 ↑pm 𝑉 ) ) |
27 |
21 23 24 25 26
|
syl22anc |
⊢ ( ( 𝑇 ∈ V ∧ ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ) ) → 𝐹 ∈ ( 𝑅 ↑pm 𝑉 ) ) |
28 |
20
|
mptex |
⊢ ( 𝑒 ∈ 𝑅 ↦ ( 𝐺 Σg ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ 𝐴 , ( 𝐹 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑒 ) ) ) ∈ V |
29 |
28
|
a1i |
⊢ ( ( 𝑇 ∈ V ∧ ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ) ) → ( 𝑒 ∈ 𝑅 ↦ ( 𝐺 Σg ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ 𝐴 , ( 𝐹 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑒 ) ) ) ∈ V ) |
30 |
7 19 27 29
|
fvmptd |
⊢ ( ( 𝑇 ∈ V ∧ ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ) ) → ( 𝑆 ‘ 𝐹 ) = ( 𝑒 ∈ 𝑅 ↦ ( 𝐺 Σg ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ 𝐴 , ( 𝐹 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑒 ) ) ) ) |
31 |
30
|
ex |
⊢ ( 𝑇 ∈ V → ( ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ) → ( 𝑆 ‘ 𝐹 ) = ( 𝑒 ∈ 𝑅 ↦ ( 𝐺 Σg ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ 𝐴 , ( 𝐹 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑒 ) ) ) ) ) |
32 |
|
0fv |
⊢ ( ∅ ‘ 𝐹 ) = ∅ |
33 |
|
fvprc |
⊢ ( ¬ 𝑇 ∈ V → ( mRSubst ‘ 𝑇 ) = ∅ ) |
34 |
4 33
|
syl5eq |
⊢ ( ¬ 𝑇 ∈ V → 𝑆 = ∅ ) |
35 |
34
|
fveq1d |
⊢ ( ¬ 𝑇 ∈ V → ( 𝑆 ‘ 𝐹 ) = ( ∅ ‘ 𝐹 ) ) |
36 |
|
fvprc |
⊢ ( ¬ 𝑇 ∈ V → ( mREx ‘ 𝑇 ) = ∅ ) |
37 |
3 36
|
syl5eq |
⊢ ( ¬ 𝑇 ∈ V → 𝑅 = ∅ ) |
38 |
37
|
mpteq1d |
⊢ ( ¬ 𝑇 ∈ V → ( 𝑒 ∈ 𝑅 ↦ ( 𝐺 Σg ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ 𝐴 , ( 𝐹 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑒 ) ) ) = ( 𝑒 ∈ ∅ ↦ ( 𝐺 Σg ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ 𝐴 , ( 𝐹 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑒 ) ) ) ) |
39 |
|
mpt0 |
⊢ ( 𝑒 ∈ ∅ ↦ ( 𝐺 Σg ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ 𝐴 , ( 𝐹 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑒 ) ) ) = ∅ |
40 |
38 39
|
eqtrdi |
⊢ ( ¬ 𝑇 ∈ V → ( 𝑒 ∈ 𝑅 ↦ ( 𝐺 Σg ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ 𝐴 , ( 𝐹 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑒 ) ) ) = ∅ ) |
41 |
32 35 40
|
3eqtr4a |
⊢ ( ¬ 𝑇 ∈ V → ( 𝑆 ‘ 𝐹 ) = ( 𝑒 ∈ 𝑅 ↦ ( 𝐺 Σg ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ 𝐴 , ( 𝐹 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑒 ) ) ) ) |
42 |
41
|
a1d |
⊢ ( ¬ 𝑇 ∈ V → ( ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ) → ( 𝑆 ‘ 𝐹 ) = ( 𝑒 ∈ 𝑅 ↦ ( 𝐺 Σg ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ 𝐴 , ( 𝐹 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑒 ) ) ) ) ) |
43 |
31 42
|
pm2.61i |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ) → ( 𝑆 ‘ 𝐹 ) = ( 𝑒 ∈ 𝑅 ↦ ( 𝐺 Σg ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ 𝐴 , ( 𝐹 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑒 ) ) ) ) |