Step |
Hyp |
Ref |
Expression |
1 |
|
mrsubffval.c |
⊢ 𝐶 = ( mCN ‘ 𝑇 ) |
2 |
|
mrsubffval.v |
⊢ 𝑉 = ( mVR ‘ 𝑇 ) |
3 |
|
mrsubffval.r |
⊢ 𝑅 = ( mREx ‘ 𝑇 ) |
4 |
|
mrsubffval.s |
⊢ 𝑆 = ( mRSubst ‘ 𝑇 ) |
5 |
|
mrsubffval.g |
⊢ 𝐺 = ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) |
6 |
|
elex |
⊢ ( 𝑇 ∈ 𝑊 → 𝑇 ∈ V ) |
7 |
|
fveq2 |
⊢ ( 𝑡 = 𝑇 → ( mREx ‘ 𝑡 ) = ( mREx ‘ 𝑇 ) ) |
8 |
7 3
|
eqtr4di |
⊢ ( 𝑡 = 𝑇 → ( mREx ‘ 𝑡 ) = 𝑅 ) |
9 |
|
fveq2 |
⊢ ( 𝑡 = 𝑇 → ( mVR ‘ 𝑡 ) = ( mVR ‘ 𝑇 ) ) |
10 |
9 2
|
eqtr4di |
⊢ ( 𝑡 = 𝑇 → ( mVR ‘ 𝑡 ) = 𝑉 ) |
11 |
8 10
|
oveq12d |
⊢ ( 𝑡 = 𝑇 → ( ( mREx ‘ 𝑡 ) ↑pm ( mVR ‘ 𝑡 ) ) = ( 𝑅 ↑pm 𝑉 ) ) |
12 |
|
fveq2 |
⊢ ( 𝑡 = 𝑇 → ( mCN ‘ 𝑡 ) = ( mCN ‘ 𝑇 ) ) |
13 |
12 1
|
eqtr4di |
⊢ ( 𝑡 = 𝑇 → ( mCN ‘ 𝑡 ) = 𝐶 ) |
14 |
13 10
|
uneq12d |
⊢ ( 𝑡 = 𝑇 → ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) = ( 𝐶 ∪ 𝑉 ) ) |
15 |
14
|
fveq2d |
⊢ ( 𝑡 = 𝑇 → ( freeMnd ‘ ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) ) = ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ) |
16 |
15 5
|
eqtr4di |
⊢ ( 𝑡 = 𝑇 → ( freeMnd ‘ ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) ) = 𝐺 ) |
17 |
14
|
mpteq1d |
⊢ ( 𝑡 = 𝑇 → ( 𝑣 ∈ ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) ↦ if ( 𝑣 ∈ dom 𝑓 , ( 𝑓 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) = ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ dom 𝑓 , ( 𝑓 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ) |
18 |
17
|
coeq1d |
⊢ ( 𝑡 = 𝑇 → ( ( 𝑣 ∈ ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) ↦ if ( 𝑣 ∈ dom 𝑓 , ( 𝑓 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑒 ) = ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ dom 𝑓 , ( 𝑓 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑒 ) ) |
19 |
16 18
|
oveq12d |
⊢ ( 𝑡 = 𝑇 → ( ( freeMnd ‘ ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) ) Σg ( ( 𝑣 ∈ ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) ↦ if ( 𝑣 ∈ dom 𝑓 , ( 𝑓 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑒 ) ) = ( 𝐺 Σg ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ dom 𝑓 , ( 𝑓 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑒 ) ) ) |
20 |
8 19
|
mpteq12dv |
⊢ ( 𝑡 = 𝑇 → ( 𝑒 ∈ ( mREx ‘ 𝑡 ) ↦ ( ( freeMnd ‘ ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) ) Σg ( ( 𝑣 ∈ ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) ↦ if ( 𝑣 ∈ dom 𝑓 , ( 𝑓 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑒 ) ) ) = ( 𝑒 ∈ 𝑅 ↦ ( 𝐺 Σg ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ dom 𝑓 , ( 𝑓 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑒 ) ) ) ) |
21 |
11 20
|
mpteq12dv |
⊢ ( 𝑡 = 𝑇 → ( 𝑓 ∈ ( ( mREx ‘ 𝑡 ) ↑pm ( mVR ‘ 𝑡 ) ) ↦ ( 𝑒 ∈ ( mREx ‘ 𝑡 ) ↦ ( ( freeMnd ‘ ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) ) Σg ( ( 𝑣 ∈ ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) ↦ if ( 𝑣 ∈ dom 𝑓 , ( 𝑓 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑒 ) ) ) ) = ( 𝑓 ∈ ( 𝑅 ↑pm 𝑉 ) ↦ ( 𝑒 ∈ 𝑅 ↦ ( 𝐺 Σg ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ dom 𝑓 , ( 𝑓 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑒 ) ) ) ) ) |
22 |
|
df-mrsub |
⊢ mRSubst = ( 𝑡 ∈ V ↦ ( 𝑓 ∈ ( ( mREx ‘ 𝑡 ) ↑pm ( mVR ‘ 𝑡 ) ) ↦ ( 𝑒 ∈ ( mREx ‘ 𝑡 ) ↦ ( ( freeMnd ‘ ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) ) Σg ( ( 𝑣 ∈ ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) ↦ if ( 𝑣 ∈ dom 𝑓 , ( 𝑓 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑒 ) ) ) ) ) |
23 |
|
ovex |
⊢ ( 𝑅 ↑pm 𝑉 ) ∈ V |
24 |
23
|
mptex |
⊢ ( 𝑓 ∈ ( 𝑅 ↑pm 𝑉 ) ↦ ( 𝑒 ∈ 𝑅 ↦ ( 𝐺 Σg ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ dom 𝑓 , ( 𝑓 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑒 ) ) ) ) ∈ V |
25 |
21 22 24
|
fvmpt |
⊢ ( 𝑇 ∈ V → ( mRSubst ‘ 𝑇 ) = ( 𝑓 ∈ ( 𝑅 ↑pm 𝑉 ) ↦ ( 𝑒 ∈ 𝑅 ↦ ( 𝐺 Σg ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ dom 𝑓 , ( 𝑓 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑒 ) ) ) ) ) |
26 |
6 25
|
syl |
⊢ ( 𝑇 ∈ 𝑊 → ( mRSubst ‘ 𝑇 ) = ( 𝑓 ∈ ( 𝑅 ↑pm 𝑉 ) ↦ ( 𝑒 ∈ 𝑅 ↦ ( 𝐺 Σg ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ dom 𝑓 , ( 𝑓 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑒 ) ) ) ) ) |
27 |
4 26
|
syl5eq |
⊢ ( 𝑇 ∈ 𝑊 → 𝑆 = ( 𝑓 ∈ ( 𝑅 ↑pm 𝑉 ) ↦ ( 𝑒 ∈ 𝑅 ↦ ( 𝐺 Σg ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ dom 𝑓 , ( 𝑓 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑒 ) ) ) ) ) |