Step |
Hyp |
Ref |
Expression |
1 |
|
mrsubffval.c |
⊢ 𝐶 = ( mCN ‘ 𝑇 ) |
2 |
|
mrsubffval.v |
⊢ 𝑉 = ( mVR ‘ 𝑇 ) |
3 |
|
mrsubffval.r |
⊢ 𝑅 = ( mREx ‘ 𝑇 ) |
4 |
|
mrsubffval.s |
⊢ 𝑆 = ( mRSubst ‘ 𝑇 ) |
5 |
|
mrsubffval.g |
⊢ 𝐺 = ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) |
6 |
1 2 3 4 5
|
mrsubfval |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ) → ( 𝑆 ‘ 𝐹 ) = ( 𝑒 ∈ 𝑅 ↦ ( 𝐺 Σg ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ 𝐴 , ( 𝐹 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑒 ) ) ) ) |
7 |
6
|
3adant3 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝑅 ) → ( 𝑆 ‘ 𝐹 ) = ( 𝑒 ∈ 𝑅 ↦ ( 𝐺 Σg ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ 𝐴 , ( 𝐹 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑒 ) ) ) ) |
8 |
|
simpr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝑅 ) ∧ 𝑒 = 𝑋 ) → 𝑒 = 𝑋 ) |
9 |
8
|
coeq2d |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝑅 ) ∧ 𝑒 = 𝑋 ) → ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ 𝐴 , ( 𝐹 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑒 ) = ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ 𝐴 , ( 𝐹 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑋 ) ) |
10 |
9
|
oveq2d |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝑅 ) ∧ 𝑒 = 𝑋 ) → ( 𝐺 Σg ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ 𝐴 , ( 𝐹 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑒 ) ) = ( 𝐺 Σg ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ 𝐴 , ( 𝐹 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑋 ) ) ) |
11 |
|
simp3 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝑅 ) → 𝑋 ∈ 𝑅 ) |
12 |
|
ovexd |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝑅 ) → ( 𝐺 Σg ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ 𝐴 , ( 𝐹 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑋 ) ) ∈ V ) |
13 |
7 10 11 12
|
fvmptd |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝑅 ) → ( ( 𝑆 ‘ 𝐹 ) ‘ 𝑋 ) = ( 𝐺 Σg ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ 𝐴 , ( 𝐹 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑋 ) ) ) |