Step |
Hyp |
Ref |
Expression |
1 |
|
mrsubffval.c |
⊢ 𝐶 = ( mCN ‘ 𝑇 ) |
2 |
|
mrsubffval.v |
⊢ 𝑉 = ( mVR ‘ 𝑇 ) |
3 |
|
mrsubffval.r |
⊢ 𝑅 = ( mREx ‘ 𝑇 ) |
4 |
|
mrsubffval.s |
⊢ 𝑆 = ( mRSubst ‘ 𝑇 ) |
5 |
|
simp3 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ ( 𝐶 ∪ 𝑉 ) ) → 𝑋 ∈ ( 𝐶 ∪ 𝑉 ) ) |
6 |
5
|
s1cld |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ ( 𝐶 ∪ 𝑉 ) ) → 〈“ 𝑋 ”〉 ∈ Word ( 𝐶 ∪ 𝑉 ) ) |
7 |
|
elun |
⊢ ( 𝑋 ∈ ( 𝐶 ∪ 𝑉 ) ↔ ( 𝑋 ∈ 𝐶 ∨ 𝑋 ∈ 𝑉 ) ) |
8 |
|
elfvex |
⊢ ( 𝑋 ∈ ( mCN ‘ 𝑇 ) → 𝑇 ∈ V ) |
9 |
8 1
|
eleq2s |
⊢ ( 𝑋 ∈ 𝐶 → 𝑇 ∈ V ) |
10 |
|
elfvex |
⊢ ( 𝑋 ∈ ( mVR ‘ 𝑇 ) → 𝑇 ∈ V ) |
11 |
10 2
|
eleq2s |
⊢ ( 𝑋 ∈ 𝑉 → 𝑇 ∈ V ) |
12 |
9 11
|
jaoi |
⊢ ( ( 𝑋 ∈ 𝐶 ∨ 𝑋 ∈ 𝑉 ) → 𝑇 ∈ V ) |
13 |
7 12
|
sylbi |
⊢ ( 𝑋 ∈ ( 𝐶 ∪ 𝑉 ) → 𝑇 ∈ V ) |
14 |
13
|
3ad2ant3 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ ( 𝐶 ∪ 𝑉 ) ) → 𝑇 ∈ V ) |
15 |
1 2 3
|
mrexval |
⊢ ( 𝑇 ∈ V → 𝑅 = Word ( 𝐶 ∪ 𝑉 ) ) |
16 |
14 15
|
syl |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ ( 𝐶 ∪ 𝑉 ) ) → 𝑅 = Word ( 𝐶 ∪ 𝑉 ) ) |
17 |
6 16
|
eleqtrrd |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ ( 𝐶 ∪ 𝑉 ) ) → 〈“ 𝑋 ”〉 ∈ 𝑅 ) |
18 |
|
eqid |
⊢ ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) = ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) |
19 |
1 2 3 4 18
|
mrsubval |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 〈“ 𝑋 ”〉 ∈ 𝑅 ) → ( ( 𝑆 ‘ 𝐹 ) ‘ 〈“ 𝑋 ”〉 ) = ( ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) Σg ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ 𝐴 , ( 𝐹 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 〈“ 𝑋 ”〉 ) ) ) |
20 |
17 19
|
syld3an3 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ ( 𝐶 ∪ 𝑉 ) ) → ( ( 𝑆 ‘ 𝐹 ) ‘ 〈“ 𝑋 ”〉 ) = ( ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) Σg ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ 𝐴 , ( 𝐹 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 〈“ 𝑋 ”〉 ) ) ) |
21 |
|
simpl1 |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ ( 𝐶 ∪ 𝑉 ) ) ∧ 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ) → 𝐹 : 𝐴 ⟶ 𝑅 ) |
22 |
21
|
ffvelrnda |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ ( 𝐶 ∪ 𝑉 ) ) ∧ 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ) ∧ 𝑣 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑣 ) ∈ 𝑅 ) |
23 |
16
|
ad2antrr |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ ( 𝐶 ∪ 𝑉 ) ) ∧ 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ) ∧ 𝑣 ∈ 𝐴 ) → 𝑅 = Word ( 𝐶 ∪ 𝑉 ) ) |
24 |
22 23
|
eleqtrd |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ ( 𝐶 ∪ 𝑉 ) ) ∧ 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ) ∧ 𝑣 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑣 ) ∈ Word ( 𝐶 ∪ 𝑉 ) ) |
25 |
|
simplr |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ ( 𝐶 ∪ 𝑉 ) ) ∧ 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ) ∧ ¬ 𝑣 ∈ 𝐴 ) → 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ) |
26 |
25
|
s1cld |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ ( 𝐶 ∪ 𝑉 ) ) ∧ 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ) ∧ ¬ 𝑣 ∈ 𝐴 ) → 〈“ 𝑣 ”〉 ∈ Word ( 𝐶 ∪ 𝑉 ) ) |
27 |
24 26
|
ifclda |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ ( 𝐶 ∪ 𝑉 ) ) ∧ 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ) → if ( 𝑣 ∈ 𝐴 , ( 𝐹 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ∈ Word ( 𝐶 ∪ 𝑉 ) ) |
28 |
27
|
fmpttd |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ ( 𝐶 ∪ 𝑉 ) ) → ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ 𝐴 , ( 𝐹 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) : ( 𝐶 ∪ 𝑉 ) ⟶ Word ( 𝐶 ∪ 𝑉 ) ) |
29 |
|
s1co |
⊢ ( ( 𝑋 ∈ ( 𝐶 ∪ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ 𝐴 , ( 𝐹 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) : ( 𝐶 ∪ 𝑉 ) ⟶ Word ( 𝐶 ∪ 𝑉 ) ) → ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ 𝐴 , ( 𝐹 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 〈“ 𝑋 ”〉 ) = 〈“ ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ 𝐴 , ( 𝐹 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ‘ 𝑋 ) ”〉 ) |
30 |
5 28 29
|
syl2anc |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ ( 𝐶 ∪ 𝑉 ) ) → ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ 𝐴 , ( 𝐹 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 〈“ 𝑋 ”〉 ) = 〈“ ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ 𝐴 , ( 𝐹 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ‘ 𝑋 ) ”〉 ) |
31 |
|
eleq1 |
⊢ ( 𝑣 = 𝑋 → ( 𝑣 ∈ 𝐴 ↔ 𝑋 ∈ 𝐴 ) ) |
32 |
|
fveq2 |
⊢ ( 𝑣 = 𝑋 → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑋 ) ) |
33 |
|
s1eq |
⊢ ( 𝑣 = 𝑋 → 〈“ 𝑣 ”〉 = 〈“ 𝑋 ”〉 ) |
34 |
31 32 33
|
ifbieq12d |
⊢ ( 𝑣 = 𝑋 → if ( 𝑣 ∈ 𝐴 , ( 𝐹 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) = if ( 𝑋 ∈ 𝐴 , ( 𝐹 ‘ 𝑋 ) , 〈“ 𝑋 ”〉 ) ) |
35 |
|
eqid |
⊢ ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ 𝐴 , ( 𝐹 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) = ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ 𝐴 , ( 𝐹 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) |
36 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑋 ) ∈ V |
37 |
|
s1cli |
⊢ 〈“ 𝑋 ”〉 ∈ Word V |
38 |
37
|
elexi |
⊢ 〈“ 𝑋 ”〉 ∈ V |
39 |
36 38
|
ifex |
⊢ if ( 𝑋 ∈ 𝐴 , ( 𝐹 ‘ 𝑋 ) , 〈“ 𝑋 ”〉 ) ∈ V |
40 |
34 35 39
|
fvmpt |
⊢ ( 𝑋 ∈ ( 𝐶 ∪ 𝑉 ) → ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ 𝐴 , ( 𝐹 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ‘ 𝑋 ) = if ( 𝑋 ∈ 𝐴 , ( 𝐹 ‘ 𝑋 ) , 〈“ 𝑋 ”〉 ) ) |
41 |
40
|
3ad2ant3 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ ( 𝐶 ∪ 𝑉 ) ) → ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ 𝐴 , ( 𝐹 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ‘ 𝑋 ) = if ( 𝑋 ∈ 𝐴 , ( 𝐹 ‘ 𝑋 ) , 〈“ 𝑋 ”〉 ) ) |
42 |
41
|
s1eqd |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ ( 𝐶 ∪ 𝑉 ) ) → 〈“ ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ 𝐴 , ( 𝐹 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ‘ 𝑋 ) ”〉 = 〈“ if ( 𝑋 ∈ 𝐴 , ( 𝐹 ‘ 𝑋 ) , 〈“ 𝑋 ”〉 ) ”〉 ) |
43 |
30 42
|
eqtrd |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ ( 𝐶 ∪ 𝑉 ) ) → ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ 𝐴 , ( 𝐹 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 〈“ 𝑋 ”〉 ) = 〈“ if ( 𝑋 ∈ 𝐴 , ( 𝐹 ‘ 𝑋 ) , 〈“ 𝑋 ”〉 ) ”〉 ) |
44 |
43
|
oveq2d |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ ( 𝐶 ∪ 𝑉 ) ) → ( ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) Σg ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ 𝐴 , ( 𝐹 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 〈“ 𝑋 ”〉 ) ) = ( ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) Σg 〈“ if ( 𝑋 ∈ 𝐴 , ( 𝐹 ‘ 𝑋 ) , 〈“ 𝑋 ”〉 ) ”〉 ) ) |
45 |
28 5
|
ffvelrnd |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ ( 𝐶 ∪ 𝑉 ) ) → ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ 𝐴 , ( 𝐹 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ‘ 𝑋 ) ∈ Word ( 𝐶 ∪ 𝑉 ) ) |
46 |
41 45
|
eqeltrrd |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ ( 𝐶 ∪ 𝑉 ) ) → if ( 𝑋 ∈ 𝐴 , ( 𝐹 ‘ 𝑋 ) , 〈“ 𝑋 ”〉 ) ∈ Word ( 𝐶 ∪ 𝑉 ) ) |
47 |
1
|
fvexi |
⊢ 𝐶 ∈ V |
48 |
2
|
fvexi |
⊢ 𝑉 ∈ V |
49 |
47 48
|
unex |
⊢ ( 𝐶 ∪ 𝑉 ) ∈ V |
50 |
|
eqid |
⊢ ( Base ‘ ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ) = ( Base ‘ ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ) |
51 |
18 50
|
frmdbas |
⊢ ( ( 𝐶 ∪ 𝑉 ) ∈ V → ( Base ‘ ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ) = Word ( 𝐶 ∪ 𝑉 ) ) |
52 |
49 51
|
ax-mp |
⊢ ( Base ‘ ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ) = Word ( 𝐶 ∪ 𝑉 ) |
53 |
52
|
eqcomi |
⊢ Word ( 𝐶 ∪ 𝑉 ) = ( Base ‘ ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ) |
54 |
53
|
gsumws1 |
⊢ ( if ( 𝑋 ∈ 𝐴 , ( 𝐹 ‘ 𝑋 ) , 〈“ 𝑋 ”〉 ) ∈ Word ( 𝐶 ∪ 𝑉 ) → ( ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) Σg 〈“ if ( 𝑋 ∈ 𝐴 , ( 𝐹 ‘ 𝑋 ) , 〈“ 𝑋 ”〉 ) ”〉 ) = if ( 𝑋 ∈ 𝐴 , ( 𝐹 ‘ 𝑋 ) , 〈“ 𝑋 ”〉 ) ) |
55 |
46 54
|
syl |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ ( 𝐶 ∪ 𝑉 ) ) → ( ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) Σg 〈“ if ( 𝑋 ∈ 𝐴 , ( 𝐹 ‘ 𝑋 ) , 〈“ 𝑋 ”〉 ) ”〉 ) = if ( 𝑋 ∈ 𝐴 , ( 𝐹 ‘ 𝑋 ) , 〈“ 𝑋 ”〉 ) ) |
56 |
20 44 55
|
3eqtrd |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ ( 𝐶 ∪ 𝑉 ) ) → ( ( 𝑆 ‘ 𝐹 ) ‘ 〈“ 𝑋 ”〉 ) = if ( 𝑋 ∈ 𝐴 , ( 𝐹 ‘ 𝑋 ) , 〈“ 𝑋 ”〉 ) ) |