Step |
Hyp |
Ref |
Expression |
1 |
|
mrsubvr.v |
⊢ 𝑉 = ( mVR ‘ 𝑇 ) |
2 |
|
mrsubvr.r |
⊢ 𝑅 = ( mREx ‘ 𝑇 ) |
3 |
|
mrsubvr.s |
⊢ 𝑆 = ( mRSubst ‘ 𝑇 ) |
4 |
|
ssun2 |
⊢ 𝑉 ⊆ ( ( mCN ‘ 𝑇 ) ∪ 𝑉 ) |
5 |
|
simp2 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐴 ) → 𝐴 ⊆ 𝑉 ) |
6 |
|
simp3 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐴 ) → 𝑋 ∈ 𝐴 ) |
7 |
5 6
|
sseldd |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐴 ) → 𝑋 ∈ 𝑉 ) |
8 |
4 7
|
sselid |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐴 ) → 𝑋 ∈ ( ( mCN ‘ 𝑇 ) ∪ 𝑉 ) ) |
9 |
|
eqid |
⊢ ( mCN ‘ 𝑇 ) = ( mCN ‘ 𝑇 ) |
10 |
9 1 2 3
|
mrsubcv |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ ( ( mCN ‘ 𝑇 ) ∪ 𝑉 ) ) → ( ( 𝑆 ‘ 𝐹 ) ‘ 〈“ 𝑋 ”〉 ) = if ( 𝑋 ∈ 𝐴 , ( 𝐹 ‘ 𝑋 ) , 〈“ 𝑋 ”〉 ) ) |
11 |
8 10
|
syld3an3 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝑆 ‘ 𝐹 ) ‘ 〈“ 𝑋 ”〉 ) = if ( 𝑋 ∈ 𝐴 , ( 𝐹 ‘ 𝑋 ) , 〈“ 𝑋 ”〉 ) ) |
12 |
|
iftrue |
⊢ ( 𝑋 ∈ 𝐴 → if ( 𝑋 ∈ 𝐴 , ( 𝐹 ‘ 𝑋 ) , 〈“ 𝑋 ”〉 ) = ( 𝐹 ‘ 𝑋 ) ) |
13 |
12
|
3ad2ant3 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐴 ) → if ( 𝑋 ∈ 𝐴 , ( 𝐹 ‘ 𝑋 ) , 〈“ 𝑋 ”〉 ) = ( 𝐹 ‘ 𝑋 ) ) |
14 |
11 13
|
eqtrd |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝑆 ‘ 𝐹 ) ‘ 〈“ 𝑋 ”〉 ) = ( 𝐹 ‘ 𝑋 ) ) |