Metamath Proof Explorer


Theorem mrsubvr

Description: The value of a substituted variable. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mrsubvr.v 𝑉 = ( mVR ‘ 𝑇 )
mrsubvr.r 𝑅 = ( mREx ‘ 𝑇 )
mrsubvr.s 𝑆 = ( mRSubst ‘ 𝑇 )
Assertion mrsubvr ( ( 𝐹 : 𝐴𝑅𝐴𝑉𝑋𝐴 ) → ( ( 𝑆𝐹 ) ‘ ⟨“ 𝑋 ”⟩ ) = ( 𝐹𝑋 ) )

Proof

Step Hyp Ref Expression
1 mrsubvr.v 𝑉 = ( mVR ‘ 𝑇 )
2 mrsubvr.r 𝑅 = ( mREx ‘ 𝑇 )
3 mrsubvr.s 𝑆 = ( mRSubst ‘ 𝑇 )
4 ssun2 𝑉 ⊆ ( ( mCN ‘ 𝑇 ) ∪ 𝑉 )
5 simp2 ( ( 𝐹 : 𝐴𝑅𝐴𝑉𝑋𝐴 ) → 𝐴𝑉 )
6 simp3 ( ( 𝐹 : 𝐴𝑅𝐴𝑉𝑋𝐴 ) → 𝑋𝐴 )
7 5 6 sseldd ( ( 𝐹 : 𝐴𝑅𝐴𝑉𝑋𝐴 ) → 𝑋𝑉 )
8 4 7 sselid ( ( 𝐹 : 𝐴𝑅𝐴𝑉𝑋𝐴 ) → 𝑋 ∈ ( ( mCN ‘ 𝑇 ) ∪ 𝑉 ) )
9 eqid ( mCN ‘ 𝑇 ) = ( mCN ‘ 𝑇 )
10 9 1 2 3 mrsubcv ( ( 𝐹 : 𝐴𝑅𝐴𝑉𝑋 ∈ ( ( mCN ‘ 𝑇 ) ∪ 𝑉 ) ) → ( ( 𝑆𝐹 ) ‘ ⟨“ 𝑋 ”⟩ ) = if ( 𝑋𝐴 , ( 𝐹𝑋 ) , ⟨“ 𝑋 ”⟩ ) )
11 8 10 syld3an3 ( ( 𝐹 : 𝐴𝑅𝐴𝑉𝑋𝐴 ) → ( ( 𝑆𝐹 ) ‘ ⟨“ 𝑋 ”⟩ ) = if ( 𝑋𝐴 , ( 𝐹𝑋 ) , ⟨“ 𝑋 ”⟩ ) )
12 iftrue ( 𝑋𝐴 → if ( 𝑋𝐴 , ( 𝐹𝑋 ) , ⟨“ 𝑋 ”⟩ ) = ( 𝐹𝑋 ) )
13 12 3ad2ant3 ( ( 𝐹 : 𝐴𝑅𝐴𝑉𝑋𝐴 ) → if ( 𝑋𝐴 , ( 𝐹𝑋 ) , ⟨“ 𝑋 ”⟩ ) = ( 𝐹𝑋 ) )
14 11 13 eqtrd ( ( 𝐹 : 𝐴𝑅𝐴𝑉𝑋𝐴 ) → ( ( 𝑆𝐹 ) ‘ ⟨“ 𝑋 ”⟩ ) = ( 𝐹𝑋 ) )