Step |
Hyp |
Ref |
Expression |
1 |
|
mrsubvr.v |
|- V = ( mVR ` T ) |
2 |
|
mrsubvr.r |
|- R = ( mREx ` T ) |
3 |
|
mrsubvr.s |
|- S = ( mRSubst ` T ) |
4 |
|
ssun2 |
|- V C_ ( ( mCN ` T ) u. V ) |
5 |
|
simp2 |
|- ( ( F : A --> R /\ A C_ V /\ X e. A ) -> A C_ V ) |
6 |
|
simp3 |
|- ( ( F : A --> R /\ A C_ V /\ X e. A ) -> X e. A ) |
7 |
5 6
|
sseldd |
|- ( ( F : A --> R /\ A C_ V /\ X e. A ) -> X e. V ) |
8 |
4 7
|
sselid |
|- ( ( F : A --> R /\ A C_ V /\ X e. A ) -> X e. ( ( mCN ` T ) u. V ) ) |
9 |
|
eqid |
|- ( mCN ` T ) = ( mCN ` T ) |
10 |
9 1 2 3
|
mrsubcv |
|- ( ( F : A --> R /\ A C_ V /\ X e. ( ( mCN ` T ) u. V ) ) -> ( ( S ` F ) ` <" X "> ) = if ( X e. A , ( F ` X ) , <" X "> ) ) |
11 |
8 10
|
syld3an3 |
|- ( ( F : A --> R /\ A C_ V /\ X e. A ) -> ( ( S ` F ) ` <" X "> ) = if ( X e. A , ( F ` X ) , <" X "> ) ) |
12 |
|
iftrue |
|- ( X e. A -> if ( X e. A , ( F ` X ) , <" X "> ) = ( F ` X ) ) |
13 |
12
|
3ad2ant3 |
|- ( ( F : A --> R /\ A C_ V /\ X e. A ) -> if ( X e. A , ( F ` X ) , <" X "> ) = ( F ` X ) ) |
14 |
11 13
|
eqtrd |
|- ( ( F : A --> R /\ A C_ V /\ X e. A ) -> ( ( S ` F ) ` <" X "> ) = ( F ` X ) ) |