Metamath Proof Explorer


Theorem mrsubcn

Description: A substitution does not change the value of constant substrings. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mrsubccat.s S = mRSubst T
mrsubccat.r R = mREx T
mrsubcn.v V = mVR T
mrsubcn.c C = mCN T
Assertion mrsubcn F ran S X C V F ⟨“ X ”⟩ = ⟨“ X ”⟩

Proof

Step Hyp Ref Expression
1 mrsubccat.s S = mRSubst T
2 mrsubccat.r R = mREx T
3 mrsubcn.v V = mVR T
4 mrsubcn.c C = mCN T
5 n0i F ran S ¬ ran S =
6 1 rnfvprc ¬ T V ran S =
7 5 6 nsyl2 F ran S T V
8 3 2 1 mrsubff T V S : R 𝑝𝑚 V R R
9 ffun S : R 𝑝𝑚 V R R Fun S
10 7 8 9 3syl F ran S Fun S
11 3 2 1 mrsubrn ran S = S R V
12 11 eleq2i F ran S F S R V
13 12 biimpi F ran S F S R V
14 fvelima Fun S F S R V f R V S f = F
15 10 13 14 syl2anc F ran S f R V S f = F
16 elmapi f R V f : V R
17 16 adantl X C V f R V f : V R
18 ssidd X C V f R V V V
19 eldifi X C V X C
20 elun1 X C X C V
21 19 20 syl X C V X C V
22 21 adantr X C V f R V X C V
23 4 3 2 1 mrsubcv f : V R V V X C V S f ⟨“ X ”⟩ = if X V f X ⟨“ X ”⟩
24 17 18 22 23 syl3anc X C V f R V S f ⟨“ X ”⟩ = if X V f X ⟨“ X ”⟩
25 eldifn X C V ¬ X V
26 25 adantr X C V f R V ¬ X V
27 26 iffalsed X C V f R V if X V f X ⟨“ X ”⟩ = ⟨“ X ”⟩
28 24 27 eqtrd X C V f R V S f ⟨“ X ”⟩ = ⟨“ X ”⟩
29 fveq1 S f = F S f ⟨“ X ”⟩ = F ⟨“ X ”⟩
30 29 eqeq1d S f = F S f ⟨“ X ”⟩ = ⟨“ X ”⟩ F ⟨“ X ”⟩ = ⟨“ X ”⟩
31 28 30 syl5ibcom X C V f R V S f = F F ⟨“ X ”⟩ = ⟨“ X ”⟩
32 31 rexlimdva X C V f R V S f = F F ⟨“ X ”⟩ = ⟨“ X ”⟩
33 15 32 mpan9 F ran S X C V F ⟨“ X ”⟩ = ⟨“ X ”⟩