| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mrsubccat.s |
⊢ 𝑆 = ( mRSubst ‘ 𝑇 ) |
| 2 |
|
mrsubccat.r |
⊢ 𝑅 = ( mREx ‘ 𝑇 ) |
| 3 |
|
mrsubcn.v |
⊢ 𝑉 = ( mVR ‘ 𝑇 ) |
| 4 |
|
mrsubcn.c |
⊢ 𝐶 = ( mCN ‘ 𝑇 ) |
| 5 |
|
n0i |
⊢ ( 𝐹 ∈ ran 𝑆 → ¬ ran 𝑆 = ∅ ) |
| 6 |
1
|
rnfvprc |
⊢ ( ¬ 𝑇 ∈ V → ran 𝑆 = ∅ ) |
| 7 |
5 6
|
nsyl2 |
⊢ ( 𝐹 ∈ ran 𝑆 → 𝑇 ∈ V ) |
| 8 |
3 2 1
|
mrsubff |
⊢ ( 𝑇 ∈ V → 𝑆 : ( 𝑅 ↑pm 𝑉 ) ⟶ ( 𝑅 ↑m 𝑅 ) ) |
| 9 |
|
ffun |
⊢ ( 𝑆 : ( 𝑅 ↑pm 𝑉 ) ⟶ ( 𝑅 ↑m 𝑅 ) → Fun 𝑆 ) |
| 10 |
7 8 9
|
3syl |
⊢ ( 𝐹 ∈ ran 𝑆 → Fun 𝑆 ) |
| 11 |
3 2 1
|
mrsubrn |
⊢ ran 𝑆 = ( 𝑆 “ ( 𝑅 ↑m 𝑉 ) ) |
| 12 |
11
|
eleq2i |
⊢ ( 𝐹 ∈ ran 𝑆 ↔ 𝐹 ∈ ( 𝑆 “ ( 𝑅 ↑m 𝑉 ) ) ) |
| 13 |
12
|
biimpi |
⊢ ( 𝐹 ∈ ran 𝑆 → 𝐹 ∈ ( 𝑆 “ ( 𝑅 ↑m 𝑉 ) ) ) |
| 14 |
|
fvelima |
⊢ ( ( Fun 𝑆 ∧ 𝐹 ∈ ( 𝑆 “ ( 𝑅 ↑m 𝑉 ) ) ) → ∃ 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ( 𝑆 ‘ 𝑓 ) = 𝐹 ) |
| 15 |
10 13 14
|
syl2anc |
⊢ ( 𝐹 ∈ ran 𝑆 → ∃ 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ( 𝑆 ‘ 𝑓 ) = 𝐹 ) |
| 16 |
|
elmapi |
⊢ ( 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) → 𝑓 : 𝑉 ⟶ 𝑅 ) |
| 17 |
16
|
adantl |
⊢ ( ( 𝑋 ∈ ( 𝐶 ∖ 𝑉 ) ∧ 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ) → 𝑓 : 𝑉 ⟶ 𝑅 ) |
| 18 |
|
ssidd |
⊢ ( ( 𝑋 ∈ ( 𝐶 ∖ 𝑉 ) ∧ 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ) → 𝑉 ⊆ 𝑉 ) |
| 19 |
|
eldifi |
⊢ ( 𝑋 ∈ ( 𝐶 ∖ 𝑉 ) → 𝑋 ∈ 𝐶 ) |
| 20 |
|
elun1 |
⊢ ( 𝑋 ∈ 𝐶 → 𝑋 ∈ ( 𝐶 ∪ 𝑉 ) ) |
| 21 |
19 20
|
syl |
⊢ ( 𝑋 ∈ ( 𝐶 ∖ 𝑉 ) → 𝑋 ∈ ( 𝐶 ∪ 𝑉 ) ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝑋 ∈ ( 𝐶 ∖ 𝑉 ) ∧ 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ) → 𝑋 ∈ ( 𝐶 ∪ 𝑉 ) ) |
| 23 |
4 3 2 1
|
mrsubcv |
⊢ ( ( 𝑓 : 𝑉 ⟶ 𝑅 ∧ 𝑉 ⊆ 𝑉 ∧ 𝑋 ∈ ( 𝐶 ∪ 𝑉 ) ) → ( ( 𝑆 ‘ 𝑓 ) ‘ 〈“ 𝑋 ”〉 ) = if ( 𝑋 ∈ 𝑉 , ( 𝑓 ‘ 𝑋 ) , 〈“ 𝑋 ”〉 ) ) |
| 24 |
17 18 22 23
|
syl3anc |
⊢ ( ( 𝑋 ∈ ( 𝐶 ∖ 𝑉 ) ∧ 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ) → ( ( 𝑆 ‘ 𝑓 ) ‘ 〈“ 𝑋 ”〉 ) = if ( 𝑋 ∈ 𝑉 , ( 𝑓 ‘ 𝑋 ) , 〈“ 𝑋 ”〉 ) ) |
| 25 |
|
eldifn |
⊢ ( 𝑋 ∈ ( 𝐶 ∖ 𝑉 ) → ¬ 𝑋 ∈ 𝑉 ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝑋 ∈ ( 𝐶 ∖ 𝑉 ) ∧ 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ) → ¬ 𝑋 ∈ 𝑉 ) |
| 27 |
26
|
iffalsed |
⊢ ( ( 𝑋 ∈ ( 𝐶 ∖ 𝑉 ) ∧ 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ) → if ( 𝑋 ∈ 𝑉 , ( 𝑓 ‘ 𝑋 ) , 〈“ 𝑋 ”〉 ) = 〈“ 𝑋 ”〉 ) |
| 28 |
24 27
|
eqtrd |
⊢ ( ( 𝑋 ∈ ( 𝐶 ∖ 𝑉 ) ∧ 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ) → ( ( 𝑆 ‘ 𝑓 ) ‘ 〈“ 𝑋 ”〉 ) = 〈“ 𝑋 ”〉 ) |
| 29 |
|
fveq1 |
⊢ ( ( 𝑆 ‘ 𝑓 ) = 𝐹 → ( ( 𝑆 ‘ 𝑓 ) ‘ 〈“ 𝑋 ”〉 ) = ( 𝐹 ‘ 〈“ 𝑋 ”〉 ) ) |
| 30 |
29
|
eqeq1d |
⊢ ( ( 𝑆 ‘ 𝑓 ) = 𝐹 → ( ( ( 𝑆 ‘ 𝑓 ) ‘ 〈“ 𝑋 ”〉 ) = 〈“ 𝑋 ”〉 ↔ ( 𝐹 ‘ 〈“ 𝑋 ”〉 ) = 〈“ 𝑋 ”〉 ) ) |
| 31 |
28 30
|
syl5ibcom |
⊢ ( ( 𝑋 ∈ ( 𝐶 ∖ 𝑉 ) ∧ 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ) → ( ( 𝑆 ‘ 𝑓 ) = 𝐹 → ( 𝐹 ‘ 〈“ 𝑋 ”〉 ) = 〈“ 𝑋 ”〉 ) ) |
| 32 |
31
|
rexlimdva |
⊢ ( 𝑋 ∈ ( 𝐶 ∖ 𝑉 ) → ( ∃ 𝑓 ∈ ( 𝑅 ↑m 𝑉 ) ( 𝑆 ‘ 𝑓 ) = 𝐹 → ( 𝐹 ‘ 〈“ 𝑋 ”〉 ) = 〈“ 𝑋 ”〉 ) ) |
| 33 |
15 32
|
mpan9 |
⊢ ( ( 𝐹 ∈ ran 𝑆 ∧ 𝑋 ∈ ( 𝐶 ∖ 𝑉 ) ) → ( 𝐹 ‘ 〈“ 𝑋 ”〉 ) = 〈“ 𝑋 ”〉 ) |