Step |
Hyp |
Ref |
Expression |
1 |
|
mrsubccat.s |
|- S = ( mRSubst ` T ) |
2 |
|
mrsubccat.r |
|- R = ( mREx ` T ) |
3 |
|
mrsubcn.v |
|- V = ( mVR ` T ) |
4 |
|
mrsubcn.c |
|- C = ( mCN ` T ) |
5 |
|
n0i |
|- ( F e. ran S -> -. ran S = (/) ) |
6 |
1
|
rnfvprc |
|- ( -. T e. _V -> ran S = (/) ) |
7 |
5 6
|
nsyl2 |
|- ( F e. ran S -> T e. _V ) |
8 |
3 2 1
|
mrsubff |
|- ( T e. _V -> S : ( R ^pm V ) --> ( R ^m R ) ) |
9 |
|
ffun |
|- ( S : ( R ^pm V ) --> ( R ^m R ) -> Fun S ) |
10 |
7 8 9
|
3syl |
|- ( F e. ran S -> Fun S ) |
11 |
3 2 1
|
mrsubrn |
|- ran S = ( S " ( R ^m V ) ) |
12 |
11
|
eleq2i |
|- ( F e. ran S <-> F e. ( S " ( R ^m V ) ) ) |
13 |
12
|
biimpi |
|- ( F e. ran S -> F e. ( S " ( R ^m V ) ) ) |
14 |
|
fvelima |
|- ( ( Fun S /\ F e. ( S " ( R ^m V ) ) ) -> E. f e. ( R ^m V ) ( S ` f ) = F ) |
15 |
10 13 14
|
syl2anc |
|- ( F e. ran S -> E. f e. ( R ^m V ) ( S ` f ) = F ) |
16 |
|
elmapi |
|- ( f e. ( R ^m V ) -> f : V --> R ) |
17 |
16
|
adantl |
|- ( ( X e. ( C \ V ) /\ f e. ( R ^m V ) ) -> f : V --> R ) |
18 |
|
ssidd |
|- ( ( X e. ( C \ V ) /\ f e. ( R ^m V ) ) -> V C_ V ) |
19 |
|
eldifi |
|- ( X e. ( C \ V ) -> X e. C ) |
20 |
|
elun1 |
|- ( X e. C -> X e. ( C u. V ) ) |
21 |
19 20
|
syl |
|- ( X e. ( C \ V ) -> X e. ( C u. V ) ) |
22 |
21
|
adantr |
|- ( ( X e. ( C \ V ) /\ f e. ( R ^m V ) ) -> X e. ( C u. V ) ) |
23 |
4 3 2 1
|
mrsubcv |
|- ( ( f : V --> R /\ V C_ V /\ X e. ( C u. V ) ) -> ( ( S ` f ) ` <" X "> ) = if ( X e. V , ( f ` X ) , <" X "> ) ) |
24 |
17 18 22 23
|
syl3anc |
|- ( ( X e. ( C \ V ) /\ f e. ( R ^m V ) ) -> ( ( S ` f ) ` <" X "> ) = if ( X e. V , ( f ` X ) , <" X "> ) ) |
25 |
|
eldifn |
|- ( X e. ( C \ V ) -> -. X e. V ) |
26 |
25
|
adantr |
|- ( ( X e. ( C \ V ) /\ f e. ( R ^m V ) ) -> -. X e. V ) |
27 |
26
|
iffalsed |
|- ( ( X e. ( C \ V ) /\ f e. ( R ^m V ) ) -> if ( X e. V , ( f ` X ) , <" X "> ) = <" X "> ) |
28 |
24 27
|
eqtrd |
|- ( ( X e. ( C \ V ) /\ f e. ( R ^m V ) ) -> ( ( S ` f ) ` <" X "> ) = <" X "> ) |
29 |
|
fveq1 |
|- ( ( S ` f ) = F -> ( ( S ` f ) ` <" X "> ) = ( F ` <" X "> ) ) |
30 |
29
|
eqeq1d |
|- ( ( S ` f ) = F -> ( ( ( S ` f ) ` <" X "> ) = <" X "> <-> ( F ` <" X "> ) = <" X "> ) ) |
31 |
28 30
|
syl5ibcom |
|- ( ( X e. ( C \ V ) /\ f e. ( R ^m V ) ) -> ( ( S ` f ) = F -> ( F ` <" X "> ) = <" X "> ) ) |
32 |
31
|
rexlimdva |
|- ( X e. ( C \ V ) -> ( E. f e. ( R ^m V ) ( S ` f ) = F -> ( F ` <" X "> ) = <" X "> ) ) |
33 |
15 32
|
mpan9 |
|- ( ( F e. ran S /\ X e. ( C \ V ) ) -> ( F ` <" X "> ) = <" X "> ) |